Novel oxazolidinone analogues bearing a condensed heteroaromatic ring as the C-ring substructure were synthesized as candidate antibacterial agents. Analogues 16 and 21 bearing imidazo[1,2-a]pyridine and 18 and 23 bearing [1,2,4]triazolo[1,5-a]pyridine as the C-ring had excellent in vitro antibacterial activities against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecalis (VRE), and penicillin-resistant Streptococcus pneumoniae (PRSP). They also showed promising therapeutic effects in a mouse model of lethal infection.
View Article and Find Full Text PDFOxazolidinones bearing a seven-membered [1,2,5]triazepane or [1,2,5]oxadiazepane heterocycle substituted with an amide or urea functionality as the C-ring and having a [1,2,3]triazole, a thiocarbamate, an isoxazole-3-ylamino, or a thioacetamide C-5 side chain unit on the A-ring instead of the typical acetamide were synthesized and their in vitro antibacterial activities towards various pathogens were evaluated. Several derivatives exhibited potent in vitro antibacterial activity toward not only Gram-positive, but also Gram-negative and linezolid-resistant pathogens. The in vivo therapeutic effects of amide 11a and ureas 16e, 17a were 2- to 3-fold greater than that of linezolid in a systemic mouse infection model treated by intravenous administration.
View Article and Find Full Text PDFWe synthesized a series of oxazolidinone analogues bearing a N-hydroxyacetyl-substituted [1,2,5]triazepane or [1,2,5]oxadiazepane C-ring unit as homologues of an earlier drug candidate, eperezolid. Several of these compounds exhibited potent in vitro antibacterial activities towards not only Gram-positive, but also Gram-negative and linezolid-resistant pathogens. Compounds 21a and 21b, bearing a thiocarbamate side chain, showed high in vivo activity against methicillin-resistant Staphylococcus aureus SR3637, together with a promising safety profile in terms of weak inhibition of monoamine oxidase and cytochrome P450 isozymes.
View Article and Find Full Text PDFSeven-membered heterocyclic [1,2,5]triazepane and [1,2,5]oxadiazepane derivatives were synthesized as candidate structures for application in drug discovery in place of conventional piperazine or morpholine moieties, offering multiple sites for modification with functional groups. We first synthesized the N-protected heterocycles, and then confirmed their utility by synthesizing analogues of the oxazolidinone antibacterial agent linezolid. The analogues exhibited potent in vitro and in vivo antibacterial activity.
View Article and Find Full Text PDF