Objective: This study aimed to examine the spatiotemporal coherence of capillary lumen fluctuations in relation to spatial variations in the pericyte lining in the cortex of anesthetized mice.
Methods: Two-photon microscopic angiography data (previously published) were reanalyzed, and spatial variations in capillary diameter fluctuations at rest and in capillary lining with vascular mural cells were measured along capillary centerlines.
Results: Relatively large diameters of the capillaries (5.
Tumour response to radiation therapy appears as changes in tumour vascular condition. There are several methods for analysing tumour blood circulatory changes one of which is dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), but there is no method that can observe the tumour vascular condition and physiological changes at the site of radiation therapy. Positron emission tomography (PET) has been applied for treatment verification in charged particle therapy, which is based on the detection of positron emitters produced through nuclear fragmentation reactions in a patient's body.
View Article and Find Full Text PDFBackground: Cerebral microvascular obstruction is critically involved in recurrent stroke and decreased cerebral blood flow with age. The obstruction must occur in the capillary with a greater resistance to perfusion pressure through the microvascular networks. However, little is known about the relationship between capillary size and embolism formation.
View Article and Find Full Text PDFBrain capillaries play a crucial role in maintaining cellular viability and thus preventing neurodegeneration. The aim of this study was to characterize the brain capillary morphology at rest and during neural activation based on a big data analysis from three-dimensional microangiography. Neurovascular responses were measured using a genetic calcium sensor expressed in neurons and microangiography with two-photon microscopy, while neural acivity was modulated by stimulation of contralateral whiskers or by a seizure evoked by kainic acid.
View Article and Find Full Text PDFCerebral hemodynamics fluctuates spontaneously over broad frequency ranges. However, its spatiotemporal coherence of flow oscillations in cerebral microcirculation remains incompletely understood. The objective of this study was to characterize the spatiotemporal fluctuations of red blood cells (RBCs) and plasma flow in the rat cerebral microcirculation by simultaneously imaging their dynamic behaviors.
View Article and Find Full Text PDFClinical and experimental evidence suggests that spreading depolarizations (SD) usually occur in patients with ischemic or hemorrhagic stroke when the gray matter of the brain is affected. In this study, we evaluated spatiotemporal changes of cerebral blood flow (CBF) during middle cerebral artery (MCA) occlusion and examined the relationship between SD occurrence and cerebral infarct development. In male isoflurane-anesthetized C57BL/6J mice, CBF changes over the ipsilateral parietal bone were recorded by laser speckle flowgraphy during and after transient (45 min, n = 22) or permanent occlusion (n = 22) of the distal MCA.
View Article and Find Full Text PDFThe biological washout of positron emitters should be modeled and corrected in order to achieve quantitative dose range verification in charged particle therapy based on positron emission tomography (PET). This biological washout effect is affected by physiological environmental conditions such as blood perfusion and metabolism, but the correlation to tumour pathology has not been studied yet.The aim of this study was to investigate the dependence of the biological washout rate on tumour vascular status in rat irradiation.
View Article and Find Full Text PDFThe present study describes methodological aspects of image analysis for angiographic image data with long-term two-photon microscopy acquired for the investigation of dynamic changes in the three-dimensional (3D) network structure of the capillaries (less than 8 μm in diameter) in the mouse cerebral cortex. Volume images of the identical capillaries over different periods of days up to 32 days were compared for adaptation under either chronic hypoxia (8-9% O) or hyperoxia (40-50% O). We observed that the median diameters of measured capillaries were 5.
View Article and Find Full Text PDFCerebral capillaries respond to changes in neural activity to maintain regional balances between energy demand and supply. However, the quantitative aspects of the capillary diameter responses and their contribution to oxygen supply to tissue remain incompletely understood. The purpose of the present study is to check if the diameters measured from large-scale angiographic image data of two-photon laser scanning fluorescent microscopy (2PLSM) are correctly determined with a custom-written MATLAB software and to investigate how the measurement errors can be reduced, such as at the junction areas of capillaries.
View Article and Find Full Text PDFA variety of brain cells participates in neurovascular coupling by transmitting and modulating vasoactive signals. The present study aimed to probe cell type-dependent cerebrovascular (i.e.
View Article and Find Full Text PDFObjective: Quantification of angiographic images with two-photon laser scanning fluorescence microscopy (2PLSM) relies on proper segmentation of the vascular images. However, the images contain inhomogeneities in the signal-to-noise ratio (SNR) arising from regional effects of light scattering and absorption. The present study developed a semiautomated quantification method for volume images of 2PLSM angiography by adjusting the binarization threshold according to local SNR along the vessel centerlines.
View Article and Find Full Text PDFPositron emission tomography (PET) has been used for dose verification in charged particle therapy. The causes of washout of positron emitters by physiological functions should be clarified for accurate dose verification. In this study, we visualized the distribution of irradiated radioactive beams, C and O beams, in the rabbit whole-body using our original depth-of-interaction (DOI)-PET prototype to add basic data for biological washout effect correction.
View Article and Find Full Text PDFObjective: Control of red blood cell velocity in capillaries is essential to meet local neuronal metabolic requirements, although changes of capillary diameter are limited. To further understand the microcirculatory response during cortical spreading depression, we analyzed the spatiotemporal changes of red blood cell velocity in intraparenchymal capillaries.
Methods: In urethane-anesthetized Tie2-green fluorescent protein transgenic mice, the velocity of fluorescence-labeled red blood cells flowing in capillaries in layer I of the cerebral cortex was automatically measured with our Matlab domain software (KEIO-IS2) in sequential images obtained with a high-speed camera laser-scanning confocal fluorescence microscope system.
Objectives In PET studies for neuroreceptors, tracer kinetics are described by the two-tissue compartment model (2-TCM), and binding parameters, including the total distribution volume (V ), non-displaceable distribution volume (V ), and binding potential (BP), can be determined from model parameters estimated by kinetic analysis. The stability of binding parameter estimates depends on the kinetic characteristics of radioligands. To describe these kinetic characteristics, we previously developed a two-phase graphic plot analysis in which V and V can be estimated from the x-intercept of regression lines for early and delayed phases, respectively.
View Article and Find Full Text PDFThe present study aimed to examine whether positron emission tomography (PET) could evaluate cerebral angiogenesis. Mice were housed in a hypoxic chamber with 8-9% oxygen for 4, 7, and 14 days, and the angiogenic responses were evaluated with a radiotracer, Cu-cyclam-RAFT-c(-RGDfK-), which targeted αβ integrin and was imaged with PET. The PET imaging results showed little uptake during all of the hypoxic periods.
View Article and Find Full Text PDFWe investigated the chronic effects of cerebral hypoperfusion on neuronal density and functional hyperemia using our misery perfusion mouse model under unilateral common carotid artery occlusion (UCCAO). Neuronal density evaluated 28 days after UCCAO using [(11)C]flumazenil-PET and histology indicated no neurologic deficit in the hippocampus and neocortex. CBF response to sensory stimulation was assessed using laser-Doppler flowmetry.
View Article and Find Full Text PDFObjective: This study aimed to develop a new method for mapping blood flow velocity based on the spatial evolution of fluorescent dye transit times captured with CLSFM in the cerebral microcirculation of anesthetized rodents.
Methods: The animals were anesthetized with isoflurane, and a small amount of fluorescent dye was intravenously injected to label blood plasma. The CLSFM was conducted through a closed cranial window to capture propagation of the dye in the cortical vessels.
Cortical spreading depression (CSD) induces marked hyperemia with a transient decrease of regional cerebral blood flow (rCBF), followed by sustained oligemia. To further understand the microcirculatory mechanisms associated with CSD, we examined the temporal changes of diameter of intraparenchymal penetrating arteries during CSD. In urethane-anesthetized mice, the diameter of single penetrating arteries at three depths was measured using two-photon microscopy during passage of repeated CSD, with continuous recordings of direct current potential and rCBF.
View Article and Find Full Text PDFAnesthesia and restraint stress have profound impacts on brain functions, including neural activity and cerebrovascular function, possibly influencing functional and neurochemical positron emission tomography (PET) imaging data. For circumventing this effect, we developed an experimental system enabling PET imaging of free-walking awake mice with minimal restraints by fixing the head to a holder. The applicability of this system was investigated by performing PET imaging of D2 dopamine receptors with [(11)C]raclopride under the following three different conditions: (1) free-walking awake state; (2) 1.
View Article and Find Full Text PDFCortical neural activities lead to changes in the cerebral blood flow (CBF), which involves astrocytic control of cerebrovascular tone. However, the manner in which astrocytic activity specifically leads to vasodilation or vasoconstriction is difficult to determine. Here, cortical astrocytes genetically expressing a light-sensitive cation channel, channelrhodopsin-2 (ChR2), were transcranially activated with a blue laser while the spatiotemporal changes in CBF were noninvasively monitored with laser speckle flowgraphy in the anesthetised mouse cortex.
View Article and Find Full Text PDFCortical spreading depression (CSD) involves mass depolarization of neurons and glial cells accompanied with changes in regional cerebral blood flow (rCBF) and energy metabolism. To further understand the mechanisms of CBF response, we examined the temporal diametric changes in pial arteries, pial veins, and cortical capillaries. In urethane-anesthetized mice, the diameters of these vessels were measured while simultaneously recording rCBF with a laser Doppler flowmeter.
View Article and Find Full Text PDF