CHD1 is a conserved chromatin remodeling factor that localizes to active genes and functions in nucleosome assembly and positioning as well as histone turnover. Mouse CHD1 is required for the maintenance of stem cell pluripotency while human CHD1 may function as a tumor suppressor. To investigate the action of CHD1 on higher order chromatin structure in differentiated cells, we examined the consequences of loss of CHD1 and over-expression of CHD1 on polytene chromosomes from salivary glands of third instar Drosophila melanogaster larvae.
View Article and Find Full Text PDFThe expression of many metazoan genes is regulated through controlled release of RNA polymerase II (Pol II) that has paused during early transcription elongation. Pausing is highly enriched at genes in stimulus-responsive pathways, where it has been proposed to poise downstream targets for rapid gene activation. However, whether this represents the major function of pausing in these pathways remains to be determined.
View Article and Find Full Text PDFEukaryotic cytosine methylation represses transcription but also occurs in the bodies of active genes, and the extent of methylation biology conservation is unclear. We quantified DNA methylation in 17 eukaryotic genomes and found that gene body methylation is conserved between plants and animals, whereas selective methylation of transposons is not. We show that methylation of plant transposons in the CHG context extends to green algae and that exclusion of histone H2A.
View Article and Find Full Text PDFIn this report we describe chd1 mutant alleles and show that the CHD1 chromatin-remodeling factor is important for wing development and fertility. While CHD1 colocalizes with elongating RNA polymerase II (Pol II) on polytene chromosomes, elongating Pol II can persist on chromatin in the absence of CHD1. These results clarify the roles of chromatin remodelers in transcription and provide novel insights into CHD1 function.
View Article and Find Full Text PDF