Environmental cues such as light and timing of food intake influence molecular clocks that produce circadian rhythmicity of many biological functions. The master circadian clock is entrained by light input and synchronizes with peripheral clocks in every organ of the body. Careers that require rotating shift work schedules predispose workers to a constant desynchronization of these biological clocks and are associated with increased risk of cardiovascular disease.
View Article and Find Full Text PDFNontraditional work schedules, such as shift work, have been associated with numerous health issues, including cardiovascular and metabolic disease. These work schedules can chronically misalign environmental timing cues with internal circadian clock systems in the brain and in peripheral organs, leading to dysfunction of those systems and their associated biological processes. Environmental circadian disruption in the kidney may be an important factor in the increased incidence of hypertension and adverse health outcomes in human shift workers.
View Article and Find Full Text PDFEnvironmental circadian disruption (ECD), characterized by repeated or long-term disruption in environmental timing cues which require the internal circadian clock to change its phase to resynchronize with the environment, is associated with numerous serious health issues in humans. While animal and isolated cell models exist to study the effects of destabilizing the relationship between the circadian system and the environment, neither approach provides an ideal solution. Here, we developed an in vitro model which incorporates both elements of a reductionist cellular model and disruption of the clock/environment relationship using temperature as an environmental cue, as occurs in vivo.
View Article and Find Full Text PDFActive Hexose Correlated Compound (AHCC) is a fermented mushroom extract and immune supplement that has been used to treat a wide range of health conditions. It helps in augmentation of the natural immune response and affects immune cell activation and outcomes. The goal of this project was to study and understand the role and mechanisms of AHCC supplementation in the prevention of immunosuppression through T cell activation.
View Article and Find Full Text PDF