There is considerable interest in understanding the developmental origins and health implications of individual differences in brain structure and function. In this pre-registered study we demonstrate that a hidden subgroup within the general population-people with synesthesia (e.g.
View Article and Find Full Text PDFWe provide a neuroimaging database consisting of 102 synaesthetic brains using state-of-the-art 3 T MRI protocols from the Human Connectome Project (HCP) which is freely available to researchers. This database consists of structural (T1- and T2-weighted) images together with approximately 24 minutes of resting state data per participant. These protocols are designed to be inter-operable and reproducible so that others can add to the dataset or directly compare it against other normative or special samples.
View Article and Find Full Text PDFTherapeutic trials of disease-modifying agents in neurodegenerative disease typically require several hundred participants and long durations for clinical endpoints. Trials of this size are not feasible for prion diseases, rare dementia disorders associated with misfolding of prion protein. In this situation, biomarkers are particularly helpful.
View Article and Find Full Text PDFBackground: There is increasing interest in improving understanding of the timing and nature of early neurodegeneration in Alzheimer's disease (AD) and developing methods to measure this in vivo. Autosomal dominant familial Alzheimer's disease (FAD) provides the opportunity for investigation of presymptomatic change. We assessed early microstructural breakdown of cortical grey matter in FAD with diffusion-weighted MRI.
View Article and Find Full Text PDFWe present a novel algorithm for the registration of pulmonary CT scans. Our method is designed for large respiratory motion by integrating sparse keypoint correspondences into a dense continuous optimization framework. The detection of keypoint correspondences enables robustness against large deformations by jointly optimizing over a large number of potential discrete displacements, whereas the dense continuous registration achieves subvoxel alignment with smooth transformations.
View Article and Find Full Text PDFThe joint analysis of brain atrophy measured with magnetic resonance imaging (MRI) and hypometabolism measured with positron emission tomography with fluorodeoxyglucose (FDG-PET) is of primary importance in developing models of pathological changes in Alzheimer's disease (AD). Most of the current multimodal analyses in AD assume a local (spatially overlapping) relationship between MR and FDG-PET intensities. However, it is well known that atrophy and hypometabolism are prominent in different anatomical areas.
View Article and Find Full Text PDFMulti-modal, multi-parametric Magnetic Resonance (MR) Imaging is becoming an increasingly sophisticated tool for neuroimaging. The relationships between parameters estimated from different individual MR modalities have the potential to transform our understanding of brain function, structure, development and disease. This article describes a new software package for such multi-contrast Magnetic Resonance Imaging that provides a unified model-fitting framework.
View Article and Find Full Text PDFDiscrete optimisation strategies have a number of advantages over their continuous counterparts for deformable registration of medical images. For example: it is not necessary to compute derivatives of the similarity term; dense sampling of the search space reduces the risk of becoming trapped in local optima; and (in principle) an optimum can be found without resorting to iterative coarse-to-fine warping strategies. However, the large complexity of high-dimensional medical data renders a direct voxel-wise estimation of deformation vectors impractical.
View Article and Find Full Text PDFImpairments of social cognition are often leading features in frontotemporal lobar degeneration (FTLD) and likely to reflect large-scale brain network disintegration. However, the neuroanatomical basis of impaired social cognition in FTLD and the role of white matter connections have not been defined. Here we assessed social cognition in a cohort of patients representing two core syndromes of FTLD, behavioural variant frontotemporal dementia (bvFTD; n = 29) and semantic variant primary progressive aphasia (svPPA; n = 15), relative to healthy older individuals (n = 37) using two components of the Awareness of Social Inference Test, canonical emotion identification and sarcasm identification.
View Article and Find Full Text PDFAlzheimer's disease (AD) is recognized to have a long presymptomatic period, during which there is progressive accumulation of molecular pathology, followed by inexorable neuronal damage. The ability to identify presymptomatic individuals with evidence of neurodegenerative change, to stage their disease, and to track progressive changes will be important for early diagnosis and for prevention trials. Despite recent advances, particularly in magnetic resonance imaging, our ability to identify early neurodegenerative changes reliably is limited.
View Article and Find Full Text PDFObjective: Novel biomarkers for monitoring progression in neurodegenerative conditions are needed. Measurement of microstructural changes in white matter (WM) using diffusion tensor imaging (DTI) may be a useful outcome measure. Here we report trajectories of WM change using serial DTI in a cohort with behavioral variant frontotemporal dementia (bvFTD).
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
November 2014
Neuroimaging biomarkers play a prominent role for disease diagnosis or tracking neurodegenerative processes. Multiple methods have been proposed by the community to extract robust disease specific markers from various imaging modalities. Evaluating the accuracy and robustness of developed methods is difficult due to the lack of a biologically realistic ground truth.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
April 2014
This paper introduces a novel method for inferring spatially varying regularisation in non-rigid registration. This is achieved through full Bayesian inference on a probabilistic registration model, where the prior on transformations is parametrised as a weighted mixture of spatially localised components. Such an approach has the advantage of allowing the registration to be more flexibly driven by the data than a more traditional global regularisation scheme, such as bending energy.
View Article and Find Full Text PDFThis paper proposes a novel approach for improving the accuracy of statistical prediction methods in spatially normalized analysis. This is achieved by incorporating registration uncertainty into an ensemble learning scheme. A probabilistic registration method is used to estimate a distribution of probable mappings between subject and atlas space.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
November 2011
In this paper we propose a novel approach for incorporating measures of spatial uncertainty, which are derived from non-rigid registration, into spatially normalised statistics. Current approaches to spatially normalised statistical analysis use point-estimates of the registration parameters. This is limiting as the registration will rarely be completely accurate, and therefore data smoothing is often used to compensate for the uncertainty of the mapping.
View Article and Find Full Text PDFA long-standing issue in non-rigid image registration is the choice of the level of regularisation. Regularisation is necessary to preserve the smoothness of the registration and penalise against unnecessary complexity. The vast majority of existing registration methods use a fixed level of regularisation, which is typically hand-tuned by a user to provide "nice" results.
View Article and Find Full Text PDF