Gallbladder cancer (GBC) presents as an aggressive malignancy with poor patient outcome. Like other epithelial cancers, the mechanisms of GBC cancer progression remain vague and efforts in finding targeted therapies fall below expectations. This study combined proteomic analysis of formalin-fixed paraffin-embedded (FFPE) GBC samples, functional and molecular characterization of potential oncogenes and identification of potential therapeutic strategies for GBC.
View Article and Find Full Text PDFProteasomes are essential molecular machines responsible for the degradation of proteins in eukaryotic cells. Altered proteasome activity has been linked to neurodegeneration, auto-immune disorders and cancer. Despite the relevance for human disease and drug development, no method currently exists to monitor proteasome composition and interactions in vivo in animal models.
View Article and Find Full Text PDFLysosomes have many roles, including degrading macromolecules and signalling to the nucleus. Lysosomal dysfunction occurs in various human conditions, such as common neurodegenerative diseases and monogenic lysosomal storage disorders (LSDs). For most LSDs, the causal genes have been identified but, in some, the function of the implicated gene is unknown, in part because lysosomes occupy a small fraction of the cellular volume so that changes in lysosomal contents are difficult to detect.
View Article and Find Full Text PDFAn Amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFDirect investigation of the early cellular changes induced by metastatic cells within the surrounding tissue remains a challenge. Here we present a system in which metastatic cancer cells release a cell-penetrating fluorescent protein, which is taken up by neighbouring cells and enables spatial identification of the local metastatic cellular environment. Using this system, tissue cells with low representation in the metastatic niche can be identified and characterized within the bulk tissue.
View Article and Find Full Text PDFBackground: Mammals display a wide range of variation in their lifespan. Investigating the molecular networks that distinguish long- from short-lived species has proven useful to identify determinants of longevity. Here, we compared the livers of young and old long-lived naked mole-rats (NMRs) and the phylogenetically closely related, shorter-lived, guinea pigs using an integrated omics approach.
View Article and Find Full Text PDFThe lysosome degrades and recycles macromolecules, signals to the master growth regulator mTORC1 [mechanistic target of rapamycin (mTOR) complex 1], and is associated with human disease. We performed quantitative proteomic analyses of rapidly isolated lysosomes and found that nutrient levels and mTOR dynamically modulate the lysosomal proteome. Upon mTORC1 inhibition, NUFIP1 (nuclear fragile X mental retardation-interacting protein 1) redistributes from the nucleus to autophagosomes and lysosomes.
View Article and Find Full Text PDFNuclear transport receptors (NTRs) recognize localization signals of cargos to facilitate their passage across the central channel of nuclear pore complexes (NPCs). About 30 different NTRs constitute different transport pathways in humans and bind to a multitude of different cargos. The exact cargo spectrum of the majority of NTRs, their specificity and even the extent to which active nucleocytoplasmic transport contributes to protein localization remains understudied because of the transient nature of these interactions and the wide dynamic range of cargo concentrations.
View Article and Find Full Text PDFArctica islandica is known as the longest-lived non-colonial metazoan species on earth and is therefore increasingly being investigated as a new model in aging research. As the mitochondrial genome is associated with the process of aging in many species and bivalves are known to possess a peculiar mechanism of mitochondrial genome inheritance including doubly uniparental inheritance (DUI), we aimed to assess the genomic variability of the A. islandica mitochondrial DNA (mtDNA).
View Article and Find Full Text PDFCell division and cell wall synthesis are tightly linked cellular processes for bacterial growth. A protoplast-type L-form Escherichia coli, strain LW1655F+, indicated that bacteria can divide without assembling a cell wall. However, the molecular basis of its phenotype remained unknown.
View Article and Find Full Text PDF