Publications by authors named "Ivo Torres Filho"

Background: Damage control resuscitation improves patient outcomes after severe hemorrhage and coagulopathy. However, effective hemostasis methods for these critical situations are lacking.

Objective: We evaluated the hemostatic efficacy of fibrinogen γ-chain (HHLGGAKQAGDV, H12)-coated, adenosine-diphosphate (ADP)-encapsulated liposomes (H12-[ADP]-liposomes) in thrombocytopenic rabbits with hemorrhagic shock.

View Article and Find Full Text PDF

Background: Evaluating the impact of ionizing radiation on stored blood is relevant since blood banks are major assets in emergency conditions such as radiation incident/attack. This study aimed to fill our knowledge gap of combined radiation and storage effects on blood.

Methods: Blood collected from 16 anesthetized rats was anticoagulated, aliquoted into storage bags, and assigned to 8 groups using protocols combining storage (1-day vs 3-day 4C) plus irradiation (75 Gy vs 0 Gy - control).

View Article and Find Full Text PDF

Background: We sought to determine the extent of loss of endothelial basement membrane (BM), leukocyte recruitment, and changes in coagulation after hemorrhagic shock, followed by limited-volume resuscitation (LVR) with 5% albumin (ALB).

Methods: Anesthetized rats were bled 40% of blood volume and assigned to treatment groups: untreated (n = 6), LVR with normal saline (NS; n = 8), or LVR with ALB (n = 8). Sham rats (n = 6) underwent all procedures except hemorrhage or resuscitation.

View Article and Find Full Text PDF

Decompensation is a major prehospital threat to survival from trauma/hemorrhage shock (T/HS) after controlling bleeding. We recently showed higher than expected mortality from a combat-relevant rat model of T/HS (27 mL/kg hemorrhage) with tourniquet (TQ) and permissive hypotensive resuscitation (PHR) with Plasmalyte. Mortality and fluid requirements were reduced by resuscitation with 25% albumin presaturated with oleic acid (OA-sat) compared with fatty-acid -free albumin or Plasmalyte.

View Article and Find Full Text PDF

Local blood flow/oxygen partial pressure (Po) distributions and flow-Po relationships are physiologically relevant. They affect the pathophysiology and treatment of conditions like hemorrhagic shock (HS), but direct noninvasive measures of flow, Po, and their heterogeneity during prolonged HS are infrequently presented. To fill this void, we report the first quantitative evaluation of flow-Po relationships and heterogeneities in normovolemia and during several hours of HS using noninvasive, unbiased, automated acquisition.

View Article and Find Full Text PDF

Background: Many studies evaluating blood flow and oxygen partial pressure (PO2) do not directly measure both parameters, are confined to few locations/microvessels, and depend on investigator's selection of measuring sites. Moreover, clinically/physiologically relevant systemic parameters are not simultaneously recorded. We implemented an automated system for prolonged blood flow/PO2 acquisition in large areas while collecting relevant systemic information.

View Article and Find Full Text PDF

Military prehospital care for hemorrhage is often characterized by use of tourniquets (TQ) and permissive hypotensive resuscitation (PHR) with crystalloids or colloids, but these treatments have not been previously combined in an animal model. Although albumin resuscitation solutions have been tested, the potential effects of nonesterified fatty acids (NEFAs) bound to albumin have not been evaluated in vivo, and few studies have investigated concentrated albumin solutions to reduce fluid requirements. We created a militarily relevant rat model of trauma and hemorrhagic shock (T/HS) (27 mL/kg hemorrhage) with TQ and PHR.

View Article and Find Full Text PDF

The microvasculature plays a central role in the pathophysiology of hemorrhagic shock and is also involved in arguably all therapeutic attempts to reverse or minimize the adverse consequences of shock. Microvascular studies specific to hemorrhagic shock were reviewed and broadly grouped depending on whether data were obtained on animal or human subjects. Dedicated sections were assigned to microcirculatory changes in specific organs, and major categories of pathophysiological alterations and mechanisms such as oxygen distribution, ischemia, inflammation, glycocalyx changes, vasomotion, endothelial dysfunction, and coagulopathy as well as biomarkers and some therapeutic strategies.

View Article and Find Full Text PDF

The in vivo study of microvascular oxygen transport requires accurate and challenging measurements of several mass transfer parameters. Although recommended, blood flow and oxygenation are typically not measured in many studies where treatments for ischemia are tested. Therefore, the aim of this communication is to briefly review cardinal aspects of oxygen transport, and the effects of perfluorocarbon (PFC) treatment on blood flow and oxygenation based mostly on studies performed in our laboratory.

View Article and Find Full Text PDF

Background: Restoration of endothelial glycocalyx (EG) barrier may be an essential therapeutic target for successful resuscitation. The aim of this study was to compare in vivo the effects of resuscitation with normal saline (NS) to lactated Ringer's solution (LR), 5% albumin and fresh frozen plasma (FFP) on their ability to maintain EG and barrier function integrity, mitigate endothelial injury and inflammation, and restore vascular homeostasis after hemorrhagic shock.

Methods: Anesthetized rats (N = 36) were subjected to hemorrhagic shock (bled 40% of total blood volume), followed by resuscitation with 45 ml/kg NS or LR, or 15 ml/kg 5% albumin or FFP.

View Article and Find Full Text PDF

Introduction: There is interest in the small-volume therapeutic use of adjunct drugs for treating hemorrhagic shock (HS). However, critical information is only partially available on mechanisms of action of promising compounds such as adenosine-lidocaine-magnesium (ALM), beta-hydroxybutyrate plus melatonin (BHB/M), and poloxamer 188 (P-188). Therefore, we tested the hypothesis that these adjuncts would reverse HS-induced damage to microvascular endothelial glycocalyx and hemodynamics.

View Article and Find Full Text PDF

The use of albumin for resuscitation has not proven as beneficial in human trials as expected from numerous animal studies. One explanation could be the practice of adding fatty acid (FA) during manufacture of pharmaceutical albumin. During ischemia, unbound free FAs (FFA) in the circulation could potentially induce cellular damage.

View Article and Find Full Text PDF

The endothelial glycocalyx plays an essential role in many physiological functions and is damaged after hemorrhage. Fluid resuscitation may further change the glycocalyx after an initial hemorrhage-induced degradation. Plasma levels of syndecan-1 and heparan sulfate have been used as indirect markers for glycocalyx degradation, but the extent to which these measures are representative of the events in the microcirculation is unknown.

View Article and Find Full Text PDF

Background: The knowledge of hemoglobin oxygen saturation (SO2) and tissue oxygenation is critical to identify the presence of shock and therapeutic options. The resonance vibrational enhancement of hemoglobin allows measurement of oxy- and deoxy species of hemoglobin and resonance Raman spectroscopy (RRS-StO2) has been successfully used to measure aggregate microvascular oxygenation. We tested the hypothesis that noninvasive oxygen saturation measured by RRS-StO2 could serve as surrogate of systemic central venous SO2.

View Article and Find Full Text PDF

Background: Severe hemorrhage is associated with the disruption of the endothelial glycocalyx (EG), a key component of the endothelium. The effects of blood components on the EG are unknown. The present study furthers our investigations into the effects of resuscitation with blood products on the skeletal muscle microcirculation of hemorrhaged rats, focusing on packed red blood cells (PRBCs) or fresh whole blood (FWB).

View Article and Find Full Text PDF

Background: The ability to monitor the patient of hemorrhage noninvasively remains a challenge. We examined the ability of resonance Raman spectroscopy to monitor tissue hemoglobin oxygenation (RRS-StO2) during hemorrhage and compared its performance with conventional invasive mixed venous (SmvO2) and central venous (ScvO2) hemoglobin oxygen saturation as well as with near-infrared spectroscopy tissue hemoglobin oxygenation (NIRS-StO2).

Methods: Five male swine were anesthetized and instrumented followed by hemorrhage at a rate of 30 mL/min for 60 minutes.

View Article and Find Full Text PDF

Background: Arterial gas embolism (AGE) is a clinical problem that occurs directly in cardiopulmonary bypass machines in open-heart surgeries, or indirectly (through cardiac or pulmonary right to left shunts) in dive accidents, resulting in serious morbidity and even death. Perfluorocarbon (PFC) emulsions have been used for the treatment of AGE in an animal model. We hypothesized that PFC emulsions enhance microvascular blood flow, speed bubble resolution, and oxygenation in AGE compared with saline in a model of cremaster muscle from anesthetized rats.

View Article and Find Full Text PDF

Background: Endothelial glycocalyx (EG) plays an essential role in endothelium integrity and may be compromised by hemorrhagic shock. The effects of currently available resuscitation fluids such as Hextend (HEX) or lactated Ringer's solution (LR) on vascular function and coagulation are not well understood. The aim of the present study was to compare the effects of fresh frozen plasma (FFP) with HEX or LR in their ability to repair EG structure, promote volume expansion, increase blood flow, and prevent coagulopathy.

View Article and Find Full Text PDF

Perfluorocarbons (PFC) are compounds with high gas solubility that could help deliver O2 to tissues and have been suggested as adjunct therapy to ischemia. Using a newly designed in vitro system, we tested the hypothesis that a third generation PFC emulsion (Oxycyte) increased O2 transport of blood by measuring changes in O2 extraction ratio. The system included a computer-controlled pump and blood-gas exchange chambers to oxygenate and deoxygenate the blood from nine sickle cell disease (SCD) patients and five healthy donors.

View Article and Find Full Text PDF

Hemorrhage is responsible for a large percentage of trauma-related deaths but the mechanisms underlying tissue ischemia are complex and not well understood. Despite the evidence linking glycocalyx degradation and hemorrhagic shock, there is no direct data obtained in vivo showing glycocalyx thickness reduction in skeletal muscle venules after hemorrhage. We hypothesize that damage to the endothelial glycocalyx is a key element in hemorrhage pathophysiology and tested the hypothesis that hemorrhage causes glycocalyx degradation in cremaster muscle microvessels.

View Article and Find Full Text PDF

Massive arteriolar gas embolism (AGE) has never been evaluated in vivo using intravital microscopy and previous perfluorocarbon (PFC) emulsions were only effective in AGE when administered before AGE. We implemented a new system for quantitative studies of massive AGE using brightfield microscopy and tested a treatment with a third-generation PFC emulsion after massive AGE. We studied bubble dynamics in cremaster muscles from anesthetized rats after AGE was induced by direct air injection into the femoral artery ipsilateral to the studied muscle.

View Article and Find Full Text PDF

Microvascular hemodynamic responses to arterial gas embolism (AGE) and local oxygen tensions (PO2) have never been evaluated in vivo using intravital microscopy. A system was implemented to study AGE in real time using brightfield and phosphorescence microscopy as well as laser-induced microvessel occlusion. Bubble dynamics, microhemodynamics and oxygenation were studied following AGE in 61 microvessels and 41 interstitial spaces from 19 anesthetized rats.

View Article and Find Full Text PDF

Background: Hemorrhage continues to be a leading cause of death from trauma sustained both in combat and in the civilian setting. New models of hemorrhage may add value in both improving our understanding of the physiologic responses to severe bleeding and as platforms to develop and test new monitoring and therapeutic techniques. We examined changes in oxygen transport produced by central volume redistribution in humans using lower body negative pressure (LBNP) as a potential mimetic of hemorrhage.

View Article and Find Full Text PDF

The identification of early indicators of hemorrhagic hypotension (HH) severity may support early therapeutic approaches and bring insights into possible mechanistic implications. However, few systematic investigations of physiologic variables during early stages of hemorrhage are available. We hypothesized that, in certain subjects, early physiologic responses to blood loss are associated with the ability to survive hemorrhage levels that are lethal to subjects that do not present the same responses.

View Article and Find Full Text PDF

The resonant Raman enhancement of hemoglobin (Hb) in the Q band region allows simultaneous identification of oxy- and deoxy-Hb. The heme vibrational bands are well known at 532 nm, but the technique has never been used to determine microvascular Hb oxygen saturation (So(2)) in vivo. We implemented a system for in vivo noninvasive measurements of So(2).

View Article and Find Full Text PDF