Publications by authors named "Ivo Siekmann"

Processes determining the amount and spatial distribution of dissolved oxygen in the ocean have been a focus of intense research over the last two decades. Anomalies known as Oxygen Minimum Zones (OMZs) have been attracting growing attention, in particular because their growth is believed to be a result of the global environmental change. Comprehensive understanding of factors contributing to and/or controlling the emergence and evolution of OMZs is still lacking though.

View Article and Find Full Text PDF

This pilot experiment examines if a loss in muscle proteostasis occurs in people with obesity and whether endurance exercise positively influences either the abundance profile or turnover rate of proteins in this population. Men with (n = 3) or without (n = 4) obesity were recruited and underwent a 14-d measurement protocol of daily deuterium oxide (DO) consumption and serial biopsies of vastus lateralis muscle. Men with obesity then completed 10-weeks of high-intensity interval training (HIIT), encompassing 3 sessions per week of cycle ergometer exercise with 1 min intervals at 100% maximum aerobic power interspersed by 1 min recovery periods.

View Article and Find Full Text PDF

Group defense is a phenomenon that occurs in many predator-prey systems. Different functional responses with substantially different properties representing such a mechanism exist. Here, we develop a functional response using timescale separation.

View Article and Find Full Text PDF

Haemostasis is governed by a highly complex system of interacting proteins. Due to the central role of thrombin, thrombin generation and specifically the thrombin generation curve (TGC) is commonly used as an indicator of haemostatic activity. Functional characteristics of the haemostatic system in neonates and children are significantly different compared with adults; at the same time plasma levels of haemostatic proteins vary considerably with age.

View Article and Find Full Text PDF

Many ion channels spontaneously switch between different levels of activity. Although this behaviour known as modal gating has been observed for a long time it is currently not well understood. Despite the fact that appropriately representing activity changes is essential for accurately capturing time course data from ion channels, systematic approaches for modelling modal gating are currently not available.

View Article and Find Full Text PDF

Spatio-temporal dynamics of intracellular calcium, [Ca2+]i, regulate the contractile function of cardiac muscle cells. Measuring [Ca2+]i flux is central to the study of mechanisms that underlie both normal cardiac function and calcium-dependent etiologies in heart disease. However, current imaging techniques are limited in the spatial resolution to which changes in [Ca2+]i can be detected.

View Article and Find Full Text PDF

Continuous-time Markov models have been considered the best representation for the stochastic dynamics of ion channels for more than thirty years. For most single-channel data sets, several open and closed states are required for accurately representing the dynamics. However, each data point only shows if the channel is open or closed but not in which state it is.

View Article and Find Full Text PDF

Based upon an extensive single-channel data set, a Markov model for types I and II inositol trisphosphate receptors (IP(3)R) is developed. The model aims to represent accurately the kinetics of both receptor types of IP(3)R depending on the concentrations of inositol trisphosphate (IP(3)), adenosine trisphosphate (ATP), and intracellular calcium (Ca(2+)). In particular, the model takes into account that for some combinations of ligands the IP(3)R switches between extended periods of inactivity alternating with intervals of bursting activity (mode changes).

View Article and Find Full Text PDF

Ion channels are characterized by inherently stochastic behavior which can be represented by continuous-time Markov models (CTMM). Although methods for collecting data from single ion channels are available, translating a time series of open and closed channels to a CTMM remains a challenge. Bayesian statistics combined with Markov chain Monte Carlo (MCMC) sampling provide means for estimating the rate constants of a CTMM directly from single channel data.

View Article and Find Full Text PDF

A model for the complete life cycle of marine viruses is presented. The Beretta-Kuang model introduces an explicit equation for viral particles but the replication process of viral particles in their hosts is not considered. The extended model keeps the structure of the original model.

View Article and Find Full Text PDF

A model of a phytoplankton-zooplankton prey-predator system with viral infection of phytoplankton is investigated. Virus particles (V) are taken into account by an explicit equation. Phytoplankton is split into a susceptible (S) and an infected (I) class.

View Article and Find Full Text PDF