Spectrochemical analysis of trace elements in complex matrices is crucial across various fields of science, industry, and technology. However, this analysis is often hindered by background interference and the challenge of detecting ultralow analyte concentrations. Surface Enhanced Infrared Absorption (SEIRA) spectroscopy is emerging as a viable technique to address these challenges as it can successfully reveal soluble and unmodified analytes in a label-free manner through their interactions with a bioreceptor following site-specific labeling with small infrared-active probes.
View Article and Find Full Text PDFThe integration of advanced materials and photonic nanostructures can lead to enhanced biodetection capabilities, crucial in clinical scenarios and point-of-care diagnostics, where simplified strategies are essential. Herein, a molecularly imprinted polymer (MIP) photonic nanostructure is demonstrated, which selectively binding to transforming growth factor-beta (TGF-β), in which the sensing transduction is enhanced by bound states in the continuum (BICs). The MIP operating as a synthetic antibody matrix and coupled with BIC resonance, enhances the optical response to TGF-β at imprinted sites, leading to an augmented detection capability, thoroughly evaluated through spectral shift and optical lever analogue readout.
View Article and Find Full Text PDFPhotonic bound states in the continuum (BICs), embedded in the spectrum of free-space waves with diverging radiative quality factor, are topologically non-trivial dark modes in open-cavity resonators that have enabled important advances in photonics. However, it is particularly challenging to achieve maximum near-field enhancement, as this requires matching radiative and non-radiative losses. Here we propose the concept of supercritical coupling, drawing inspiration from electromagnetically induced transparency in near-field coupled resonances close to the Friedrich-Wintgen condition.
View Article and Find Full Text PDFWe apply surface-enhanced infrared absorption (SEIRA) spectroscopy to monitor the denaturation process of a surface-bound protein A monolayer. Our proposed platform relies on a plasmonic metasurface comprising different spatial subregions ("pixels") that are engineered to exhibit different resonances covering the infrared region of the electromagnetic spectrum that is matched to the vibrational modes of the Amide groups. Specifically, we are able to determine changes in the Amide I and Amide II vibration coupled modes, by comparing the SEIRA reflectance spectra pertaining to the native state and a denatured state induced by a pH variation.
View Article and Find Full Text PDFHeterojunction photodetector based on reduced graphene oxide (rGO) has been realized using a spin coating technique. The electrical and optical characterization of bare GO and thermally reduced GO thin films deposited on glass substrate has been carried out. Ultraviolet-visible-infrared transmittance measurements of the GO and rGO thin films revealed broad absorption range, while the absorbance analysis evaluates rGO band gap of about 2.
View Article and Find Full Text PDFWe propose and demonstrate a sensing platform based on plasmonic metasurfaces for the detection of very low concentrations of deoxyribo-nucleic acid (DNA) fragments. The platform relies on surface-enhanced infrared absorption spectroscopy, implemented a multispectral metasurface. Specifically, different regions ("pixels") are engineered so as to separately cover the medium-infrared range of the electromagnetic spectrum extending from the functional-groups to the fingerprint region of a single analyte.
View Article and Find Full Text PDFIn this work, we investigate the evanescent field sensing mechanism provided by an all-dielectric metasurface supporting bound states in the continuum (BICs). The metasurface is based on a transparent photonic crystal with subwavelength thickness. The BIC electromagnetic field is localized along the direction normal to the photonic crystal nanoscale-thin slab (PhCS) because of a topology-induced confinement, exponentially decaying in the material to detect.
View Article and Find Full Text PDFA novel optical label-free bio-sensing platform based on a new class of resonances supported in a photonic crystal metasurface is reported herein. Molecular binding is detected as a shift in the resonant wavelength of the bound states in the continuum of radiation modes. The new configuration is applied to the recognition of the interaction between protein p53 and its protein regulatory partner murine double minute 2 (MDM2).
View Article and Find Full Text PDFPorous biosilica nanoparticles obtained from diatomites (DNPs) have been recently demonstrated to be non-toxic nanovectors of therapeutic agents in cancer cells. In this work, the internalization kinetics and intracellular spatial distribution of functionalized DNPs incubated with human lung epidermoid carcinoma cell line (H1355) up to 72 hours are investigated by Raman imaging. The label-free Raman results are compared with confocal fluorescence microscopy and photoluminescence (PL) data.
View Article and Find Full Text PDFMicrofluidic technology allows to realize devices in which cells can be imaged in their three-dimensional shape. However, there are still some limitations in the method, due to the fact that cells follow a straight path while they are flowing in a channel. This can result in a loss in information, since only one side of the cell will be visible.
View Article and Find Full Text PDFFabrication and characterization of an optically monitored hybrid patch for local administration of drugs, based on polymeric micro-needles and a porous silicon free-standing membrane, are reported. The micro-needles are realized by an innovative photolithographic approach that allows fine tuning of geometrical parameters, using polyethylene glycol and a commercial photo-catalyzer. The porous silicon multilayer not only increases the storage of a relevant amount of the drug, but also offers a continuous, naked-eye monitoring of the drug delivery process.
View Article and Find Full Text PDFIn this paper, a new strategy for highly selective and sensitive direct detection of lymphoma cells by exploiting the interaction between a peptide and its B-cell receptor, has been evaluated. In particular, an idiotype peptide, able to specifically bind the B-cell receptor of A20 cells in mice engrafted with A20 lymphoma, has been used as molecular probe. The new detection technique has been demonstrated on a planar crystalline silicon chip.
View Article and Find Full Text PDFBackground: Diatomite is a natural porous biomaterial of sedimentary origin, formed by fragments of diatom siliceous skeletons, called "frustules". Due to large availability in many areas of the world, chemical stability, and non-toxicity, these fossil structures have been widespread used in lot of industrial applications, such as food production, water extracting agent, production of cosmetics and pharmaceutics. However, diatomite is surprisingly still rarely used in biomedical applications.
View Article and Find Full Text PDFRapid screening tests in medical diagnostic and environmental analysis are often based on oligonucleotide biochips. In this paper, we studied the stability of functionalized mesoporous silicon supports in the solid-phase synthesis of oligonucleotides, exploiting several chemical procedures. A 19-mer mixed sequence has been successfully synthesized on aminosilane-modified porous silicon photonic structures.
View Article and Find Full Text PDFSome natural structures show three-dimensional morphologies on the micro- and nano-scale, characterized by levels of symmetry and complexity well far beyond those fabricated by best technologies available. This is the case of diatoms, unicellular microalgae, whose protoplasm is enclosed in a nanoporous microshell, made of hydrogenated amorphous silica, called frustule. We have studied the optical properties of Arachnoidiscus sp.
View Article and Find Full Text PDFUnlabelled: Diatomite is a natural fossil material of sedimentary origin, constituted by fragments of diatom siliceous skeletons. In this preliminary work, the properties of diatomite nanoparticles as potential system for the delivery of drugs in cancer cells were exploited. A purification procedure, based on thermal treatments in strong acid solutions, was used to remove inorganic and organic impurities from diatomite and to make them a safe material for medical applications.
View Article and Find Full Text PDFIn this paper, design, fabrication and characterization of an all-silicon photodetector (PD) at 1550 nm, have been reported. Our device is a surface-illuminated PD constituted by a Fabry-Perot microcavity incorporating a Cu/p-Si Schottky diode. Its absorption mechanism, based on the internal photoemission effect (IPE), has been enhanced by critical coupling condition.
View Article and Find Full Text PDFA porous silicon (PSi) based microarray has been integrated with a microfluidic system, as a proof of concept device for the optical monitoring of selective label-free DNA-DNA interaction. A 4 × 4 square matrix of PSi one dimensional photonic crystals, each one of 200 μm diameter and spaced by 600 μm, has been sealed by a polydimethylsiloxane (PDMS) channels circuit. The PSi optical microarray elements have been functionalized by DNA single strands after sealing: the microfluidic circuit allows to reduce significantly the biologicals and chemicals consumption, and also the incubation time with respect to a not integrated device.
View Article and Find Full Text PDFHydrophobins are small proteins secreted by fungi, which self-assemble into amphipathic membranes at air-liquid or liquid-solid interfaces. The physical and chemical properties of some hydrophobins, both in solution and as a biofilm, are affected by poly or oligosaccharides. We have studied the interaction between glucose and the hydrophobin Vmh2 from Pleurotus ostreatus by spectroscopic ellipsometry (SE), atomic force microscopy (AFM) and water contact angle (WCA).
View Article and Find Full Text PDFIn this paper we discuss and experimentally demonstrate that in a quasi- zero-average-refractive-index (QZAI) metamaterial, in correspondence of a divergent source in near infrared (λ = 1.55 μm) the light scattered out is extremely directive (Δθ(out) = 0.06°), coupling with diffraction order of the alternating complementary media grating.
View Article and Find Full Text PDFDue to recent breakthroughs, silicon photonics is now the most active discipline within the field of integrated optics and, at the same time, a present reality with commercial products available on the market. Silicon photodiodes are excellent detectors at visible wavelengths, but the development of high-performance photodetectors on silicon CMOS platforms at wavelengths of interest for telecommunications has remained an imperative but unaccomplished task so far. In recent years, however, a number of near-infrared all-silicon photodetectors have been proposed and demonstrated for optical interconnect and power-monitoring applications.
View Article and Find Full Text PDFThe protein-ligand molecular interactions imply strong geometrical and structural rearrangements of the biological complex which are normally detected by high sensitivity optical techniques such as time-resolved fluorescence microscopy. In this work, we have measured, by optical spectroscopic reflectometry in the visible-near-infrared region, the interaction between a sugar binding protein (SBP), covalently bound on the surface of a porous silicon (PSi) microcavity, and glucose, at different concentrations and temperatures. Variable-angle spectroscopic ellipsometric (VASE) characterization of protein-functionalized PSi layers confirms that the protein-ligand system has an overall volume smaller than the SBP alone.
View Article and Find Full Text PDF