Photoemission spectroscopy (PES) is an underrepresented part of current and past studies of compositionally complex alloys (CCA) such as high-entropy alloys (HEA) and their derivatives. PES studies are very important for understanding the electronic structure of materials, and are therefore essential in some cases for a correct description of the intrinsic properties of CCAs. Here, we present several examples showing the importance of PES.
View Article and Find Full Text PDFMagnetism, when combined with an unconventional electronic band structure, can give rise to forefront electronic properties such as the quantum anomalous Hall effect, axion electrodynamics, and Majorana fermions. Here we report the characterization of high-quality crystals of EuSnP, a new quantum material specifically designed to engender unconventional electronic states plus magnetism. EuSnP has a layered, BiTe-type structure.
View Article and Find Full Text PDFNodal-line semimetals (NLSs) represent a new type of topological semimetallic phase beyond Weyl and Dirac semimetals in the sense that they host closed loops or open curves of band degeneracies in the Brillouin zone. Parallel to the classification of type-I and type-II Weyl semimetals, there are two types of NLSs. The type-I NLS phase has been proposed and realized in many compounds, whereas the exotic type-II NLS phase that strongly violates Lorentz symmetry has remained elusive.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2018
Enhancement of hydrogen (H) absorption kinetics improves the performance of hydrogen-purifying membranes and hydrogen-storage materials, which is necessary for utilizing hydrogen as a carbon-free energy carrier. Pd-Au alloys are known to show higher hydrogen solubility than pure Pd. However, the effect of Au on the hydrogen penetration from the surface into the subsurface region has not been clarified so far.
View Article and Find Full Text PDF