Publications by authors named "Ivo Konvalina"

Nanostructured materials continue to find applications in various electronic and sensing devices, chromatography, separations, drug delivery, renewable energy, and catalysis. While major advancements on the synthesis and characterization of these materials have already been made, getting information about their structures at sub-nanometer resolution remains challenging. It is also unfortunate to find that many emerging or already available powerful analytical methods take time to be fully adopted for characterization of various nanomaterials.

View Article and Find Full Text PDF

The segmented semiconductor detectors for transmitted electrons in ultrahigh resolution scanning electron microscopes allow observing samples in various imaging modes. Typically, two standard modes of objective lens, with and without a magnetic field, differ by their resolution. If the beam deceleration mode is selected, then an electrostatic field around the sample is added.

View Article and Find Full Text PDF

The detailed examination of electron scattering in solids is of crucial importance for the theory of solid-state physics, as well as for the development and diagnostics of novel materials, particularly those for micro- and nanoelectronics. Among others, an important parameter of electron scattering is the inelastic mean free path (IMFP) of electrons both in bulk materials and in thin films, including 2D crystals. The amount of IMFP data available is still not sufficient, especially for very slow electrons and for 2D crystals.

View Article and Find Full Text PDF
Article Synopsis
  • * A new spectroscopic method is introduced that effectively identifies chemical variations in carbon, validated through experiments and modeling, particularly focusing on how these variations appear on HOPG surfaces under exposure to air or electron beams.
  • * The study combines secondary electron spectroscopy and hyperspectral imaging to reveal complex relationships between carbon and metal species in nanoscale films, highlighting the inhomogeneous incorporation of carbon and a connection between the orientation of metallic components and types of carbon present.
View Article and Find Full Text PDF

Scanning electron microscopes come equipped with different types of detectors for the collection of signal electrons emitted from samples. In-lens detection systems mostly consist of several auxiliary electrodes that help electrons to travel in a direction towards the detector. This paper aims to show that a through-the-lens detector in a commercial electron microscope Magellan 400 FEG can, under specific conditions, work as an energy band-pass filter of secondary electrons that are excited by the primary beam electrons.

View Article and Find Full Text PDF

Three-dimensional simulations of the trajectories of secondary electrons (SE) in the scanning electron microscope have been performed for plenty of real configurations of the specimen chamber, including all its basic components. The primary purpose was to evaluate the collection efficiency of the Everhart-Thornley detector of SE and to reveal fundamental rules for tailoring the set-ups in which efficient signal acquisition can be expected. Intuitive realizations about the easiness of attracting the SEs towards the biased front grid of the detector have shown themselves likely as false, and all grounded objects in the chamber have been proven to influence the spatial distribution of the signal-extracting field.

View Article and Find Full Text PDF