Mitochondria are affected by chemical substances and play a critical role in drug-induced liver injury (DILI). Chemical substances can have a significant impact on various cellular processes, such as the disruption of oxidative phosphorylation, oxidative stress, and alteration of glucose metabolism. Given the consequences of these effects, it is crucial to understand the molecular pathways of chemical substances in the context of hepatotoxicity to prevent and treat DILI.
View Article and Find Full Text PDFThe proton electrochemical gradient generated by the respiratory chain activity accounts for over 90% of the available respiratory energy and, as such, its evaluation and accurate measurement regarding total values and fluctuations are an invaluable component of the understanding of mitochondrial function. Consequently, alterations in electric potential across the inner mitochondrial membrane generated by differential protonic accumulation and transport are known as the mitochondrial membrane potential, or Δψ, and are reflective of the functional metabolic status of mitochondria. There are several experimental approaches to measure Δψ, ranging from fluorometric evaluations to electrochemical probes.
View Article and Find Full Text PDFReactive oxygen species (ROS) are important second messengers in many metabolic processes and signaling pathways. Disruption of the balance between ROS generation and antioxidant defenses results in the overproduction of ROS and subsequent oxidative damage to biomolecules and cellular components that disturb cellular function. Oxidative stress contributes to the initiation and progression of many liver pathologies such as ischemia-reperfusion injury (LIRI), non-alcoholic fatty liver disease (NAFLD), and hepatocellular carcinoma (HCC).
View Article and Find Full Text PDFLiver ischemia-reperfusion injury (LIRI) is a major cause of the development of complications in different clinical settings such as liver resection and liver transplantation. Damage arising from LIRI is a major risk factor for early graft rejection and is associated with higher morbidity and mortality after surgery. Although the mechanisms leading to the injury of parenchymal and non-parenchymal liver cells are not yet fully understood, mitochondrial dysfunction is recognized as a hallmark of LIRI that exacerbates cellular injury.
View Article and Find Full Text PDFHepatic ischemia reperfusion injury (HIRI) is a major hurdle in many clinical scenarios, including liver resection and transplantation. Various studies and countless surgical events have led to the observation of a strong correlation between HIRI induced by liver transplantation and early allograft-dysfunction development. The detrimental impact of HIRI has driven the pursuit of new ways to alleviate its adverse effects.
View Article and Find Full Text PDFPharmacological conditioning is a protective strategy against ischemia/reperfusion injury, which occurs during liver resection and transplantation. Polyethylene glycols have shown multiple benefits in cell and organ preservation, including antioxidant capacity, edema prevention and membrane stabilization. Recently, polyethylene glycol 35 kDa (PEG35) preconditioning resulted in decreased hepatic injury and protected the mitochondria in a rat model of cold ischemia.
View Article and Find Full Text PDFBile acids (BA) have shown promising effects in animal models of obesity. However, the said effects are thought to rely on a thermogenic effect, which is questionably present in humans. A previous work has shown that the BA chenodeoxycholic acid (CDCA) can revert obesity and accelerate metabolism in animal and cell culture models.
View Article and Find Full Text PDFMitochondria possess a genome that codes for proteins, in the same fashion as the nuclear genome. However, the small, circular mitochondrial DNA (mtDNA) molecule has a reduced base pair content, for it can only code for 2 rRNA, 22 tRNA molecules, and 13 proteins, all of them part of the mitochondrial respiratory chain. As such, all of the other mitochondrial components derive from nuclear genome.
View Article and Find Full Text PDFMitochondria are highly dynamic organelles capable of adapting their network, morphology, and function, playing a role in oxidative phosphorylation and many cellular processes in most cell types. Skeletal muscle is a very plastic tissue, subjected to many morphological changes following diverse stimuli, such as during myogenic differentiation and regenerative myogenesis. For some time now, mitochondria have been reported to be involved in myogenesis by promoting a bioenergetic remodeling and assisting myoblasts in surviving the process.
View Article and Find Full Text PDFMetformin is the most used biguanide drug for the treatment of type 2 diabetes mellitus. Despite being mostly known for its hepatic anti-gluconeogenic effect, it is also known to modulate microRNAs (miRNAs, miRs) associated with metabolic diseases. The latter mechanism could be relevant for better understanding metformin's mechanisms underlying its biological effects.
View Article and Find Full Text PDFLiver regeneration is a remarkably complex phenomenon conserved across all vertebrates, enabling the restoration of lost liver mass in a matter of days. Unfortunately, extensive damage to the liver may compromise this process, often leading to the death of affected individuals. Ischemia/reperfusion injury (IRI) is a common source of damage preceding regeneration, often present during liver transplantation, resection, trauma, or hemorrhagic shock.
View Article and Find Full Text PDFThe proton electrochemical gradient generated by respiratory chain activity accounts for over 90% of all available ATP and, as such, its evaluation and accurate measurements regarding its total values and fluctuations is an invaluable component in the understanding of mitochondrial functions. Consequently, alterations in electric potential across the inner mitochondrial membrane generated by differential protonic accumulations and transport are known as the mitochondrial membrane potential, or Δψ, and are reflective of the functional metabolic status of mitochondria. There are several experimental approaches to measure Δψ, ranging from fluorometric evaluations to electrochemical probes.
View Article and Find Full Text PDFHepatic ischemia/reperfusion (I/R) injury is a leading cause of organ dysfunction and failure in numerous pathological and surgical settings. At the core of this issue lies mitochondrial dysfunction. Hence, strategies that prime mitochondria towards damage resilience might prove applicable in a clinical setting.
View Article and Find Full Text PDFMetabolic diseases, such as type 2 diabetes or obesity, are the consequence of the disruption of the organism's metabolic pathways. The discovery of small non-coding RNAs-microRNAs (miRNAs)-as post-transcriptional gene regulators opened new doors for the development of novel strategies to combat said diseases. The two strands of miR-378a, miR-378a-3p, and miR-378a-5p are encoded in the Ppargc1b gene and have an active role in the regulation of several metabolic pathways such as mitochondrial metabolism and autophagy.
View Article and Find Full Text PDF