Mismatched base pairs alter the flexibility and intrinsic curvature of DNA. The role of such DNA features is not fully understood in the mismatch repair pathway. MutS/DNA complexes exhibit DNA bending, PHE intercalation, and changes of base-pair parameters near the mismatch.
View Article and Find Full Text PDFSeveral sequences forming G-quadruplex are highly conserved in regulatory regions of genomes of different organisms and affect various biological processes like gene expression. Diverse G-quadruplex properties can be modulated via their interaction with small polyaromatic molecules such as pyrene. To investigate how pyrene interacts with G-rich DNAs, we incorporated deoxyuridine nucleotide(s) with a covalently attached pyrene moiety (Upy) into a model system that forms parallel G-quadruplex structures.
View Article and Find Full Text PDFMultitopic supramolecular guests with finely tuned affinities toward widely explored cucurbit[]urils (CBs) and cyclodextrins (CDs) have been recently designed and tested as functional components of advanced supramolecular systems. We employed various spacers between the adamantane cage and a cationic moiety as a tool for tuning the binding strength toward CB7 to prepare a set of model guests with and values of (0.6-5.
View Article and Find Full Text PDFThe formation of purine and pyrimidine base pairs (BPs), which contributes to shaping of the canonical and noncanonical 3D structures of nucleic acids, is one the most investigated phenomena in chemistry and life sciences. In this contribution, the anatomy of the bond energy (BDE) of the base-pairing interaction in 39 different arrangements found experimentally or predicted for DNA structures containing the four common nucleobases (A, C, G, T) in their neutral or protonated forms is described in light of the theory of interacting quantum atoms within the context of the quantum theory of atoms in molecules. The interplay of individual energy components involved in the three stages of the bond formation process (structural deformation, electron-density promotion, and intermolecular interaction) is studied.
View Article and Find Full Text PDFMismatch repair is a highly conserved cellular pathway responsible for repairing mismatched dsDNA. Errors are detected by the MutS enzyme, which most likely senses altered mechanical property of damaged dsDNA rather than a specific molecular pattern. While the curved shape of dsDNA in crystallographic MutS/DNA structures suggests the role of DNA bending, the theoretical support is not fully convincing.
View Article and Find Full Text PDF