Publications by authors named "Ivo Dlouhy"

The ability of cryogenic treatment to improve tool steel performance is well established; however, the selection of optimal heat treatment is pivotal for cost reduction and extended tool life. This investigation delves into the influence of distinct cryogenic and tempering treatments on the hardness, fracture toughness, and tribological properties of Vanadis 6 tool steel. Emphasis was given to comprehending wear mechanisms, wear mode identification, volume loss estimation, and detailed characterization of worn surfaces through scanning electron microscopy coupled with energy dispersive spectroscopy and confocal microscopy.

View Article and Find Full Text PDF

Conventional heat treatment is not capable of converting a sufficient amount of retained austenite into martensite in high-carbon or high-carbon and high-alloyed iron alloys. Cryogenic treatment induces the following alterations in the microstructures: (i) a considerable reduction in the retained austenite amount, (ii) formation of refined martensite coupled with an increased number of lattice defects, such as dislocations and twins, (iii) changes in the precipitation kinetics of nano-sized transient carbides during tempering, and (iv) an increase in the number of small globular carbides. These microstructural alterations are reflected in mechanical property improvements and better dimensional stability.

View Article and Find Full Text PDF

We investigated the effects of interstitial N and C on the stacking fault energy (SFE) of an equiatomic CoCrNi medium entropy alloy. Results of computer modeling were compared to tensile deformation and electron microscopy data. Both N and C in solid solution increase the SFE of the face-centered cubic (FCC) alloy matrix at room temperature, with the former having a more significant effect by 240% for 0.

View Article and Find Full Text PDF

An unjustified simplification of the local quantitative criterion regarding cleavage nucleation is a key problem in the utilisation of the Local Approach to Fracture (LA), particularly to predict the fracture toughness within the ductile-to-brittle transition (DBT) region. The theoretical concept of the effect of both temperature and the plastic strain value on the crack nuclei (CN) generation rate in iron and ferritic steels is presented. It is shown how the plastic strain and temperature affect CN formation rate and, as a consequence, govern the shape of the temperature dependence of fracture toughness and its scatter limits.

View Article and Find Full Text PDF

The temperature dependence of tensile characteristics and fracture toughness of the standardly heat-treated low-alloyed steel OCHN3MFA along with three additionally heat-treated grades was experimentally studied. In the temperature range of ⟨-196; 22⟩ °C, all the additional heat treatments transferred the standard steel from a high- to ultra-high strength levels even with improved tensile ductility characteristics. This could be explained by a reduction of the inclusion content, refinement of the martensitic blocks, ductile retained austenite content, and homogenization of the shape ratio of martensitic laths as revealed by metallographic, X-ray, and EBSD techniques.

View Article and Find Full Text PDF

This paper reports the microstructural evolution and mechanical properties of a low-density AlNbTaTiVZr refractory high-entropy alloy (RHEA) prepared by means of a combination of mechanical alloying and spark plasma sintering (SPS). Prior to sintering, the morphology, chemical homogeneity and crystal structures of the powders were thoroughly investigated by varying the milling times to find optimal conditions for densification. The sintered bulk RHEAs were produced with diverse feedstock powder conditions.

View Article and Find Full Text PDF

Three and five-layered silicon carbide-based composites containing 0, 5, and 15 wt.% of graphene nanoplatelets (GNPs) were prepared with the aim to obtain a sufficiently high electrical conductivity in the surface layer suitable for electric discharge machining (EDM). The layer sequence in the asymmetric three-layered composites was SiC/SiC-5GNPs/SiC-15GNPs, while in the symmetric five-layered composite, the order of layers was SiC-15GNPs/SiC-5GNPs/SiC/SiC-5GNPs/SiC-15GNPs.

View Article and Find Full Text PDF

In the present work, the effects of electrolytic hydrogen charging of T92 steel weldments on their room-temperature tensile properties were investigated. Two circumferential weldments between the T92 grade tubes were produced by gas tungsten arc welding using the matching Thermanit MTS 616 filler material. The produced weldments were individually subjected to considerably differing post-welding heat treatment (PWHT) procedures.

View Article and Find Full Text PDF

Bacterial infection associated with medical implants is a major threat to healthcare. This work reports the fabrication of Copper(II)-Chitosan (Cu(II)-CS) complex coatings deposited by electrophoretic deposition (EPD) as potential antibacterial candidate to combat microorganisms to reduce implant related infections. The successful deposition of Cu(II)-CS complex coatings on stainless steel was confirmed by physicochemical characterizations.

View Article and Find Full Text PDF

The focus of this study is the evaluation of the influence of Ti concentration on the tensile properties of powder metallurgy high entropy alloys. Three NiCoCrFeTi alloys with X = 0.3; 0.

View Article and Find Full Text PDF

Vanadis 6 ledeburitic tool steel was subjected to sub-zero treatment at -75 °C for different durations, and for different subsequent tempering regimes. The impact of these treatments on the microstructure, hardness variations, and toughness characteristics of the steel was investigated. The obtained results infer that the retained austenite amount was reduced to one fourth by sub-zero treatment (SZT), and the population density of add-on carbides was increased by factor of three to seven, depending on the duration of SZT.

View Article and Find Full Text PDF

The present work is focused on the synthesis of CoCrFeMnNi high entropy alloy (HEA) interstitially alloyed with nitrogen via powder metallurgy routes. Using a simple method, nitrogen was introduced to the HEA from the protective N gas atmosphere during mechanical alloying (MA) processing. The lattice parameter and amount of nitrogen in HEA were observed to be linearly proportional to the milling duration.

View Article and Find Full Text PDF

The mechanical reliability of reversible solid oxide cell (SOC) components is critical for the development of highly efficient, durable, and commercially competitive devices. In particular, the mechanical integrity of the ceramic cell, also known as membrane electrolyte assembly (MEA), is fundamental as its failure would be detrimental to the performance of the whole SOC stack. In the present work, the mechanical robustness of an electrolyte-supported cell was determined via ball-on-3-balls flexural strength measurements.

View Article and Find Full Text PDF

To provide a reliable integration of components within a solid oxide electrolysis cell stack, it is fundamental to evaluate the mechanical properties of the glass⁻ceramic sealing materials, as well as the stability of the metal⁻glass⁻ceramic interface. In this work, the mechanical behavior of two previously developed glass⁻ceramic sealants joined to Crofer22APU steel is investigated at room temperature, 650 °C, and 850 °C under shear load. The mechanical properties of both the glass⁻ceramics showed temperature dependence.

View Article and Find Full Text PDF

A new technique for the production of glass foams, based on alkali activation and gel casting, previously applied to soda-lime glass, was successfully extended to boro-alumino-silicate glass, recovered from the recycling of pharmaceutical vials. A weak alkali activation (2.5 M NaOH or NaOH/KOH aqueous solutions) of fine glass powders (below 70 µm) allowed for the obtainment of well-dispersed concentrated aqueous suspensions, undergoing gelation by treatment at low temperature (75 °C).

View Article and Find Full Text PDF

Glass-based geopolymers, incorporating fly ash and borosilicate glass, were processed in conditions of high alkalinity (NaOH 10⁻13 M). Different formulations (fly ash and borosilicate in mixtures of 70⁻30 wt% and 30⁻70 wt%, respectively) and physical conditions (soaking time and relative humidity) were adopted. Flexural strength and fracture toughness were assessed for samples processed in optimized conditions by three-point bending and chevron notch testing, respectively.

View Article and Find Full Text PDF

The processing conditions for preparing well dispersed silica-graphene nanoplatelets and silica-graphene oxide nanoplatelets (GONP) composites were optimized using powder and colloidal processing routes. Fully dense silica-GONP composites with up to 2.5 vol% loading were consolidated using spark plasma sintering.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionad5bqf0if5nd322cf0jlhlb2o2v1bboh): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once