Careful design of experiments using living organisms (e.g. mice) is of critical importance from both an ethical and a scientific standpoint.
View Article and Find Full Text PDFVascular occlusion sites largely determine the pattern of cerebral tissue damage and likelihood of subsequent reperfusion after acute ischemic stroke. We aimed to elucidate relationships between flow obstruction in segments of the internal carotid artery (ICA) and middle cerebral artery (MCA), and (1) profiles of acute ischemic lesions and (2) probability of subsequent beneficial reperfusion. Embolic stroke was induced by unilateral intracarotid blood clot injection in normotensive (n=53) or spontaneously hypertensive (n=20) rats, followed within 2 hours by magnetic resonance (MR) angiography (MRA), diffusion- (DWI) and perfusion-weighted magnetic resonance imaging (MRI) (PWI).
View Article and Find Full Text PDFBackground: The pathogenesis of delayed cerebral injury after aneurysmal subarachnoid hemorrhage (SAH) is largely unresolved. In particular, the progression and interplay of tissue and perfusion changes, which can significantly affect the outcome, remain unclear. Only a few studies have assessed pathophysiological developments between subacute and chronic time points after SAH, which may be ideally studied with noninvasive methods in standardized animal models.
View Article and Find Full Text PDFIndividualized stroke treatment decisions can be improved by accurate identification of the extent of salvageable tissue. Magnetic resonance imaging (MRI)-based approaches, including measurement of a 'perfusion-diffusion mismatch' and calculation of infarction probability, allow assessment of tissue-at-risk; however, the ability to explicitly depict potentially salvageable tissue remains uncertain. In this study, five predictive algorithms (generalized linear model (GLM), generalized additive model, support vector machine, adaptive boosting, and random forest) were tested in their potency to depict acute cerebral ischemic tissue that can recover after reperfusion.
View Article and Find Full Text PDFVariable efficacies have been reported for glucocorticoid drugs as anti-inflammatory treatment after stroke. We applied an alternative drug delivery strategy, by injection of dexamethasone phosphate-containing liposomes in combination with recombinant tissue plasminogen activator (rtPA), in an experimental stroke model, and tested the hypothesis that this approach improves behavioral recovery and reduces lesion growth. Rats were subjected to right middle cerebral artery occlusion with a blood clot.
View Article and Find Full Text PDFIntroduction: Aneurysmal subarachnoid hemorrhage (SAH) has a poor outcome, particularly attributed to progressive injury after the initial incident. Several studies suggest a critical role for inflammation in lesion progression after SAH. Our goal was to test whether treatment with anti-inflammatory interferon-β, which has shown promise as a therapeutic agent in experimental ischaemic stroke, can protect the brain after SAH.
View Article and Find Full Text PDFIntroduction: Aneurysmal subarachnoid hemorrhage (SAH) affects relatively young people and carries a poor prognosis with a case fatality rate of 35%. One of the major systemic complications associated with SAH is acute lung injury (ALI) which occurs in up to one-third of the patients and is associated with poor outcome. ALI in SAH may be predisposed by neurogenic pulmonary edema (NPE) and inflammatory mediators.
View Article and Find Full Text PDF