During the most active period of star formation in galaxies, which occurs in the redshift range 1 3, strong bursts of star formation result in significant quantities of dust, which obscures new stars being formed as their UV/optical light is absorbed and then re-emitted in the infrared, which redshifts into the mm/sub-mm bands for these early times. To get a complete picture of the high- galaxy population, we need to survey a large patch of the sky in the sub-mm with sufficient angular resolution to resolve all galaxies, but we also need the depth to fully sample their cosmic evolution, and therefore obtain their redshifts using direct mm spectroscopy with a very wide frequency coverage. This requires a large single-dish sub-mm telescope with fast mapping speeds at high sensitivity and angular resolution, a large bandwidth with good spectral resolution and multiplex spectroscopic capabilities.
View Article and Find Full Text PDFAgRP neurons in the arcuate nucleus of the hypothalamus (ARC) coordinate homeostatic changes in appetite associated with fluctuations in food availability and leptin signaling. Identifying the relevant transcriptional regulatory pathways in these neurons has been a priority, yet such attempts have been stymied due to their low abundance and the rich cellular diversity of the ARC. Here we generated AgRP neuron-specific transcriptomic and chromatin accessibility profiles from male mice during three distinct hunger states of satiety, fasting-induced hunger, and leptin-induced hunger suppression.
View Article and Find Full Text PDFMagnetic fields are fundamental to the evolution of galaxies, playing a key role in the astrophysics of the interstellar medium and star formation. Large-scale ordered magnetic fields have been mapped in the Milky Way and nearby galaxies, but it is not known how early in the Universe such structures formed. Here we report the detection of linearly polarized thermal emission from dust grains in a strongly lensed, intrinsically luminous galaxy that is forming stars at a rate more than 1,000 times that of the Milky Way at redshift 2.
View Article and Find Full Text PDFCarbohydrate response element-binding protein (ChREBP) is a carbohydrate-sensing transcription factor that regulates both adaptive and maladaptive genomic responses in coordination of systemic fuel homeostasis. Genetic variants in the ChREBP locus associate with diverse metabolic traits in humans, including circulating lipids. To identify novel ChREBP-regulated hepatokines that contribute to its systemic metabolic effects, we integrated ChREBP ChIP-Seq analysis in mouse liver with human genetic and genomic data for lipid traits and identified hepatocyte growth factor activator (HGFAC) as a promising ChREBP-regulated candidate in mice and humans.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
August 2021
The nutrient sensors peroxisome proliferator-activated receptor γ (PPARγ) and mechanistic target of rapamycin complex 1 (mTORC1) closely interact in the regulation of adipocyte lipid storage. The precise mechanisms underlying this interaction and whether this extends to other metabolic processes and the endocrine function of adipocytes are still unknown. We investigated herein the involvement of mTORC1 as a mediator of the actions of the PPARγ ligand rosiglitazone in subcutaneous inguinal white adipose tissue (iWAT) mass, endocrine function, lipidome, transcriptome and branched-chain amino acid (BCAA) metabolism.
View Article and Find Full Text PDFCosmological simulations predict that the Universe contains a network of intergalactic gas filaments, within which galaxies form and evolve. However, the faintness of any emission from these filaments has limited tests of this prediction. We report the detection of rest-frame ultraviolet Lyman-α radiation from multiple filaments extending more than one megaparsec between galaxies within the SSA22 protocluster at a redshift of 3.
View Article and Find Full Text PDFAll measurements of cosmic star formation must assume an initial distribution of stellar masses-the stellar initial mass function-in order to extrapolate from the star-formation rate measured for typically rare, massive stars (of more than eight solar masses) to the total star-formation rate across the full stellar mass spectrum . The shape of the stellar initial mass function in various galaxy populations underpins our understanding of the formation and evolution of galaxies across cosmic time . Classical determinations of the stellar initial mass function in local galaxies are traditionally made at ultraviolet, optical and near-infrared wavelengths, which cannot be probed in dust-obscured galaxies, especially distant starbursts, whose apparent star-formation rates are hundreds to thousands of times higher than in the Milky Way, selected at submillimetre (rest-frame far-infrared) wavelengths.
View Article and Find Full Text PDFStarburst galaxies at the peak of cosmic star formation are among the most extreme star-forming engines in the Universe, producing stars over about 100 million years (ref. 2). The star-formation rates of these galaxies, which exceed 100 solar masses per year, require large reservoirs of cold molecular gas to be delivered to their cores, despite strong feedback from stars or active galactic nuclei.
View Article and Find Full Text PDFImages of dust continuum and carbon monoxide (CO) line emission are powerful tools for deducing structural characteristics of galaxies, such as disc sizes, H2 gas velocity fields and enclosed H2 and dynamical masses. We report on a fundamental constraint set by the cosmic microwave background (CMB) on the observed structural and dynamical characteristics of galaxies, as deduced from dust continuum and CO-line imaging at high redshifts. As the CMB temperature rises in the distant Universe, the ensuing thermal equilibrium between the CMB and the cold dust and H2 gas progressively erases all spatial and spectral contrasts between their brightness distributions and the CMB.
View Article and Find Full Text PDFNoble gas molecules have not hitherto been detected in space. From spectra obtained with the Herschel Space Observatory, we report the detection of emission in the 617.5- and 1234.
View Article and Find Full Text PDFStellar archaeology shows that massive elliptical galaxies formed rapidly about ten billion years ago with star-formation rates of above several hundred solar masses per year. Their progenitors are probably the submillimetre bright galaxies at redshifts z greater than 2. Although the mean molecular gas mass (5 × 10(10) solar masses) of the submillimetre bright galaxies can explain the formation of typical elliptical galaxies, it is inadequate to form elliptical galaxies that already have stellar masses above 2 × 10(11) solar masses at z ≈ 2.
View Article and Find Full Text PDFSome planetary systems harbour debris disks containing planetesimals such as asteroids and comets. Collisions between such bodies produce small dust particles, the spectral features of which reveal their composition and, hence, that of their parent bodies. A measurement of the composition of olivine crystals (Mg(2-2x)Fe(2x)SiO(4)) has been done for the protoplanetary disk HD 100546 (refs 3, 4) and for olivine crystals in the warm inner parts of planetary systems.
View Article and Find Full Text PDFThe old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight correlation between the mass of the black hole and the mass of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming galaxies are usually dust-obscured and are brightest at infrared and submillimetre wavelengths.
View Article and Find Full Text PDFThe extragalactic background light at far-infrared wavelengths comes from optically faint, dusty, star-forming galaxies in the Universe with star formation rates of a few hundred solar masses per year. These faint, submillimetre galaxies are challenging to study individually because of the relatively poor spatial resolution of far-infrared telescopes. Instead, their average properties can be studied using statistics such as the angular power spectrum of the background intensity variations.
View Article and Find Full Text PDFGravitational lensing is a powerful astrophysical and cosmological probe and is particularly valuable at submillimeter wavelengths for the study of the statistical and individual properties of dusty star-forming galaxies. However, the identification of gravitational lenses is often time-intensive, involving the sifting of large volumes of imaging or spectroscopic data to find few candidates. We used early data from the Herschel Astrophysical Terahertz Large Area Survey to demonstrate that wide-area submillimeter surveys can simply and easily detect strong gravitational lensing events, with close to 100% efficiency.
View Article and Find Full Text PDFThe detection of circumstellar water vapour around the ageing carbon star IRC +10216 challenged the current understanding of chemistry in old stars, because water was predicted to be almost absent in carbon-rich stars. Several explanations for the water were postulated, including the vaporization of icy bodies (comets or dwarf planets) in orbit around the star, grain surface reactions, and photochemistry in the outer circumstellar envelope. With a single water line detected so far from this one carbon-rich evolved star, it is difficult to discriminate between the different mechanisms proposed.
View Article and Find Full Text PDFMassive galaxies in the early Universe have been shown to be forming stars at surprisingly high rates. Prominent examples are dust-obscured galaxies which are luminous when observed at sub-millimetre wavelengths and which may be forming stars at a rate of 1,000 solar masses (M(middle dot in circle)) per year. These intense bursts of star formation are believed to be driven by mergers between gas-rich galaxies.
View Article and Find Full Text PDFThe tight relationship between the masses of black holes and galaxy spheroids in nearby galaxies implies a causal connection between the growth of these two components. Optically luminous quasars host the most prodigious accreting black holes in the Universe, and can account for greater than or approximately equal to 30 per cent of the total cosmological black-hole growth. As typical quasars are not, however, undergoing intense star formation and already host massive black holes (> 10(8)M(o), where M(o) is the solar mass), there must have been an earlier pre-quasar phase when these black holes grew (mass range approximately (10(6)-10(8))M(o)).
View Article and Find Full Text PDFThe most massive galaxies in the present-day Universe are found to lie in the centres of rich clusters. They have old, coeval stellar populations suggesting that the bulk of their stars must have formed at early epochs in spectacular starbursts, which should be luminous phenomena when observed at submillimetre wavelengths. The most popular model of galaxy formation predicts that these galaxies form in proto-clusters at high-density peaks in the early Universe.
View Article and Find Full Text PDFLarge amounts of dust (>10(8)M(o)) have recently been discovered in high-redshift quasars and galaxies corresponding to a time when the Universe was less than one-tenth of its present age. The stellar winds produced by stars in the late stages of their evolution (on the asymptotic giant branch of the Hertzsprung-Russell diagram) are thought to be the main source of dust in galaxies, but they cannot produce that dust on a short enough timescale (&<1 Gyr) to explain the results in the high-redshift galaxies. Supernova explosions of massive stars (type II) are also a potential source, with models predicting 0.
View Article and Find Full Text PDFA significant fraction of the energy emitted in the early Universe came from very luminous galaxies that are largely hidden at optical wavelengths (because of interstellar dust grains); this energy now forms part of the cosmic background radiation at wavelengths near 1 mm (ref. 1). Some submillimetre (submm) galaxies have been resolved from the background radiation, but they have been difficult to study because of instrumental limitations.
View Article and Find Full Text PDFMolecular hydrogen (H2) is an important component of galaxies because it fuels star formation and the accretion of gas onto active galactic nuclei (AGN), the two processes that can generate the large infrared luminosities of gas-rich galaxies. Observations of spectral-line emission from the tracer molecule carbon monoxide (CO) are used to probe the properties of this gas. But the lines that have been studied in the local Universe-mostly the lower rotational transitions of J = 1 --> 0 and J = 2 --> 1-have hitherto been unobservable in high-redshift galaxies.
View Article and Find Full Text PDF