Publications by authors named "Ivis F Chaple"

Background: Neuroendocrine tumors (NETs) are clinically diverse types of tumors that can arise anywhere in the body. Previous studies have shown that somatostatin receptors (SSTRs) are overexpressed on NET cell membranes relative to healthy tissue, allowing for tumor targeting through radiolabeled somatostatin analogs (SSAs). This work aims to develop a novel Zr-labeled tracer incorporating the SSA, octreotide (TOC), for positron emission tomography (PET) imaging of SSTR + NETs and predictive dosimetry calculations, leveraging the excellent nuclear (t = 3.

View Article and Find Full Text PDF

Background: The Editorial Board of EJNMMI Radiopharmacy and Chemistry releases a biannual highlight commentary to update the readership on trends in the field of radiopharmaceutical development.

Main Body: This selection of highlights provides commentary on 19 different topics selected by each coauthoring Editorial Board member addressing a variety of aspects ranging from novel radiochemistry to first-in-human application of novel radiopharmaceuticals.

Conclusion: Trends in radiochemistry and radiopharmacy are highlighted.

View Article and Find Full Text PDF

Head and neck squamous cell carcinoma (HNSCC) is a type of head and neck cancer that is aggressive, difficult to treat, and often associated with poor prognosis. HNSCC is the sixth most common cancer worldwide, highlighting the need to develop novel treatments for this disease. The current standard of care for HNSCC usually involves a combination of surgical resection, radiation therapy, and chemotherapy.

View Article and Find Full Text PDF

Despite its prevalence in the environment, the chemistry of the Ti ion has long been relegated to organic solutions or hydrolyzed TiO polymorphs. A knowledge gap in stabilizing molecular Ti species in aqueous environments has prevented the use of this ion for various applications such as radioimaging, design of water-compatible metal-organic frameworks (MOFs), and aqueous-phase catalysis applications. Herein, we show a thorough thermodynamic screening of bidentate chelators with Ti in aqueous solution, as well as computational and structural analyses of key compounds.

View Article and Find Full Text PDF

Purpose: Positron Emission Tomography is an important molecular imaging technique for detection and diagnoses of various disease states. This work aims to develop novel titanium-45 (t = 3.08 h) PET tracers using Prostate Specific Membrane Antigen (PSMA) targeting vectors for imaging of prostate cancer as proof of concept for this relatively unexplored isotope.

View Article and Find Full Text PDF

The hetero-oligomeric retinoid oxidoreductase complex (ROC) catalyzes the interconversion of all-trans-retinol and all-trans-retinaldehyde to maintain the steady-state output of retinaldehyde, the precursor of all-trans-retinoic acid that regulates the transcription of numerous genes. The interconversion is catalyzed by two distinct components of the ROC: the NAD(H)-dependent retinol dehydrogenase 10 (RDH10) and the NADP(H)-dependent dehydrogenase reductase 3 (DHRS3). The binding between RDH10 and DHRS3 subunits in the ROC results in mutual activation of the subunits.

View Article and Find Full Text PDF

Enterobacteria, including , bloom to high levels in the gut during inflammation and strongly contribute to the pathology of inflammatory bowel diseases. To survive in the inflamed gut, must tolerate high levels of antimicrobial compounds produced by the immune system, including toxic metals like copper and reactive chlorine oxidants such as hypochlorous acid (HOCl). Here, we show that extracellular copper is a potent detoxifier of HOCl and that the widely conserved bacterial HOCl resistance enzyme RclA, which catalyzes the reduction of copper(II) to copper(I), specifically protects against damage caused by the combination of HOCl and intracellular copper.

View Article and Find Full Text PDF

Titanium-45 (t = 3.08 h) is a radiometal with excellent nuclear characteristics, including a high positron branching ratio (85%) and low average positron energy (0.439 MeV), for the development of PET imaging agents.

View Article and Find Full Text PDF

With the increasing focus on a more personalized approach to medicine using imaging techniques to select patients for targeted treatment or theranostic strategies, interest in the development of new radionuclides is expanding. Through the development of production and radiochemistry techniques, several new radiometals are being added to the toolbox of the nuclear imaging community. Sc, Mn, and Ti are all emerging transition metal radionuclides and will be discussed in this short review.

View Article and Find Full Text PDF