Publications by authors named "Ivette J Bermudez Macias"

New synthetic hybrid materials and their increasing complexity have placed growing demands on crystal growth for single-crystal X-ray diffraction analysis. Unfortunately, not all chemical systems are conducive to the isolation of single crystals for traditional characterization. Here, small-molecule serial femtosecond crystallography (smSFX) at atomic resolution (0.

View Article and Find Full Text PDF

A beamline for temporal diagnostics of extreme ultraviolet (XUV) femtosecond pulses at the free-electron laser in Hamburg (FLASH) at DESY was designed, built and put into operation. The intense ultra-short XUV pulses of FLASH fluctuate from pulse to pulse due to the underlying FEL operating principle and demand single-shot diagnostics. To cope with this, the new beamline is equipped with a terahertz field-driven streaking setup that enables the determination of single pulse duration and arrival time.

View Article and Find Full Text PDF

Self-amplified spontaneous emission (SASE) pulses delivered by free electron lasers (FELs) are inherently fluctuating sources; each pulse varies in energy, duration, arrival time and spectral shape. Therefore, there is strong demand for a full characterization of the properties of SASE radiation, which will facilitate more precise interpretation of the experimental data taken at SASE FELs. In this paper, we present an investigation into the fluctuations of pulse duration, spectral distribution, arrival time and pulse energy of SASE XUV pulses at FLASH, both on a shot-to-shot basis and on average over many pulses.

View Article and Find Full Text PDF

The THz-field-driven streak camera has proven to be a powerful diagnostic-technique that enables the shot-to-shot characterization of the duration and the arrival time jitter of free electron laser (FEL) pulses. Here we investigate the performance of three computational approaches capable to determine the duration of FEL pulses with complex temporal structures from single-shot measurements of up to three simultaneously recorded spectra. We use numerically simulated FEL pulses in order to validate the accuracy of the pulse length retrieval in average as well as in a single-shot mode.

View Article and Find Full Text PDF