Publications by authors named "Ivette Banuelos-Cabrera"

Objective: Seizures of frontal or temporal lobe origin can associate with vocalizations in humans. Our objective was to assess whether rats emit specific seizure-related patterns of ultrasonic vocalizations (USVs) during seizures and epileptiform activity.

Methods: Adult male Sprague-Dawley rats were treated with a single administration of pentylenetetrazol (PTZ, 50 mg/kg, i.

View Article and Find Full Text PDF

A biomarker is a characteristic that can be objectively measured as an indicator of normal biologic processes, pathogenic processes, or responses to an exposure or intervention, including therapeutic interventions. Biomarker modalities include molecular, histologic, radiographic, or physiologic characteristics. To improve the understanding and use of biomarker terminology in biomedical research, clinical practice, and medical product development, the Food and Drug Administration (FDA)-National Institutes of Health (NIH) Joint Leadership Council developed the BEST Resource (Biomarkers, EndpointS, and other Tools).

View Article and Find Full Text PDF

Severe traumatic brain injury (TBI) induces seizures or status epilepticus (SE) in 20-30% of patients during the acute phase. We hypothesized that severe TBI induced with lateral fluid-percussion injury (FPI) triggers post-impact SE. Adult Sprague-Dawley male rats were anesthetized with isoflurane and randomized into the sham-operated experimental control or lateral FPI-induced severe TBI groups.

View Article and Find Full Text PDF

Background: T-lymphocyte (T-cell) invasion into the brain parenchyma is a major consequence of traumatic brain injury (TBI). However, the role of T-cells in the post-TBI functional outcome and secondary inflammatory processes is unknown. We explored the dynamics of T-cell infiltration into the cortex after TBI to establish whether the infiltration relates to post-injury functional impairment/recovery and progression of the secondary injury.

View Article and Find Full Text PDF

Experiments were designed to evaluate the tissue content of tele-methylhistamine (t-MeHA) and histamine as well as H3 receptor (H3 Rs) binding and activation of the heterotrimeric guanine nucleotide binding αi/o proteins (Gαi/o) coupled to these receptors in the hippocampus and temporal neocortex of patients (n = 10) with pharmacoresistant mesial temporal lobe epilepsy (MTLE). Patients with MTLE showed elevated tissue content of t-MeHA in the hippocampus. Analyses revealed that a younger age at seizure onset was correlated with a higher tissue content of t-MeHA, lower H3 R binding, and lower efficacy of Gαi/o protein activation in the hippocampus.

View Article and Find Full Text PDF

Previously we demonstrated that noninvasive transcranial focal electrical stimulation (TFS) with sub-effective doses of diazepam reduces status epilepticus (SE)-induced neuronal damage. However, it was unclear if this neuroprotective effect is a consequence of the decrease in the glutamate release. The aim of the present study was to evaluate the effects of TFS on γ-Aminobutyric acid (GABA) and glutamate release in the hippocampus during pilocarpine-induced SE.

View Article and Find Full Text PDF

The aim of the present study was to evaluate the effects of transcranial focal electrical stimulation (TFS) on γ-aminobutyric acid (GABA) and glutamate release in the hippocampus under basal conditions and during pilocarpine-induced status epilepticus (SE). Animals were previously implanted with a guide cannula attached to a bipolar electrode into the right ventral hippocampus and a concentric ring electrode placed on the skull surface. The first microdialysis experiment was designed to determine, under basal conditions, the effects of TFS (300 Hz, 200 μs biphasic square pulses, for 30 min) on afterdischarge threshold (ADT) and the release of GABA and glutamate in the hippocampus.

View Article and Find Full Text PDF

Blood-brain barrier (BBB) disruption has been associated with several acute and chronic brain disorders such as Alzheimer's disease, Parkinson's disease and epilepsy. This represents a critical situation because damaged integrity of the BBB is related to the influx of immune mediators, plasma proteins and other outside elements from blood to the central nervous system (CNS) that may trigger a cascade of events that leads to neuroinflammation. In this review, evidence that mast cells and the release of factors such as histamine play an important role in the neuroinflammatory process associated with brain disorders such as Alzheimer's disease, Parkinson's disease and epilepsy is presented.

View Article and Find Full Text PDF

P-glycoprotein (P-gp) has been associated with pharmacoresistance and mechanisms regulating the membrane potential. However, at present it is unknown if P-gp overexpression in brain is associated with changes in membrane depolarization in refractory epilepsy. Experiments were designed to evaluate the membrane depolarization and P-gp overexpression induced by repetitive pentilenetetrazole (PTZ)-induced-seizures.

View Article and Find Full Text PDF