Publications by authors named "Ivetta Varyan"

This work is devoted to the creation of biocompatible fibrous materials with a high antimicrobial effect based on poly-3-hydroxybutyrate (PHB) and chlorophyll (Chl). The data obtained show the possibility of obtaining fibrous materials from PHB and Chl by electrospinning methods. The obtained electrospun matrices were investigated by the SEM, DSC and FTIR methods.

View Article and Find Full Text PDF

Electrospun ultrathin fibers based on binary compositions of polylactide (PLA) and poly(ε-caprolactone) (PCL) with the various content from the polymer ratio from 0/100 to 100/0 have been explored. Combining thermal (DSC) and spectropy (ESR) techniques, the effect of biopolymer content on the characteristics of the crystal structure of PLA and PCL and the rotative diffusion of the stable TEMPO radical in the intercrystallite areas of PLA/PCL compositions was shown. It was revealed that after PLA and PCL blending, significant changes in the degree of crystallinity of PLA, PCL segment mobility, sorption of the Tempo probe, as well as its activation energy of rotation in the intercrystalline areas of PLA/PCL fibers, were evaluated.

View Article and Find Full Text PDF

This article addresses the entire life cycle of the all-green fibrous materials based on poly(3-hydroxybutyrate) (PHB) containing a natural biocompatible additive Hemin (Hmi): from preparation, service life, and the end of life upon in-soil biodegradation. Fibrous PHB/Hmi materials with a highly developed surface and interconnected porosity were prepared by electrospinning (ES) from Hmi-containing feed solutions. Structural organization of the PHB/Hmi materials (porosity, uniform structure, diameter of fibers, surface area, distribution of Hmi within the PHB matrix, phase composition, etc.

View Article and Find Full Text PDF

Electrospun biomimetic materials based on polyester of natural origin poly-3-hudroxybutyrate (PHB) modified with hemin (Hmi) and fibrinogen (Fbg) represent a great interest and are potentially applicable in various fields. Here, we describe formulation of the new fibrous PHB-Fbg and PHB-Hmi-Fbg materials with complex structure for biomedical application. The average diameter of the fibers was 3.

View Article and Find Full Text PDF

In order to create new biodegradable nanocomposites for biomedicine, packaging, and environmentally effective adsorbents, ultra-thin composite fibers consisting of poly(3-hydroxybutyrate) (PHB) and graphene oxide (GO) were obtained by electrospinning. Comprehensive studies of ultrathin fibers combining thermal characteristics, dynamic electron paramagnetic resonance (ESR) probe measurements, and scanning electron microscopy (SEM) were carried out. It is shown that at the addition of 0.

View Article and Find Full Text PDF

This work addresses the challenges concerning the development of "all-green" high-performance biodegradable membrane materials based on poly-3-hydroxybutyrate (PHB) and a natural biocompatible functional additive, iron-containing porphyrin, Hemin (Hmi) via modification and surface functionalization. A new facile and versatile approach based on electrospinning (ES) is advanced when modification of the PHB membranes is performed by the addition of low concentrations of Hmi (from 1 to 5 wt.%).

View Article and Find Full Text PDF

Due to the current environmental situation, biopolymers are replacing the usual synthetic polymers, and special attention is being paid to poly-3-hydroxybutyrate (PHB), which is a biodegradable polymer of natural origin. In this paper, the rate of biodegradation of films and fibers based on PHB was compared. The influence of exposure to soil on the structure and properties of materials was evaluated using methods of mechanical analysis, the DSC method and FTIR spectroscopy.

View Article and Find Full Text PDF

Electrospun fabrics have unique properties due to their uniform morphology and high surface area to volume ratio. Ultrathin nonwoven fabrics are produced for many applications: biomedical, nanosensors, tissue engineering and filtration systems. In this work, nonwoven polylactide, polylactide/natural rubber, poly-3-hydroxybutyrate, and poly-3-hydroxybutyrate/nitrile butadiene rubber fabrics were prepared by electrospinning methods.

View Article and Find Full Text PDF

The effect of the hemin (Hmi) on the structure and properties of nanocomposite electrospun materials based on poly-3-hydroxybutyrate (PHB) is discussed in the article. The additive significantly affected the morphology of fibers allowed to produce more elastic material and provided high antimicrobial activity. The article considers also the impact of the hemin on the biocompatibility of the nonwoven material based on PHB and the prospects for wound healing.

View Article and Find Full Text PDF

The development of innovative fibrous materials with valuable multifunctional properties based on biodegradable polymers and modifying additives presents a challenging direction for modern materials science and environmental safety. In this work, high-performance composite fibrous materials based on semicrystalline biodegradable poly-3-hydroxybutyrate (PHB) and natural iron-containing porphyrin, hemin () were prepared by electrospinning. The addition of to the feed PHB mixture (at concentrations above 3 wt.

View Article and Find Full Text PDF

Comprehensive studies combining X-ray diffraction analysis, thermophysical, dynamic measurements by probe method and scanning electron microscopy have been carried out. The peculiarity of the crystalline and amorphous structure of ultra-thin fibers based on poly(3-hydroxybutyrate) (PHB) containing minor concentrations (0-5%) of a gene and a tetraphenylporphyrin (TFP) complex with iron (in the form of FeCl) are considered. When these complexes are added to the PHB fibers, the morphology of the fibers change: a sharp change in the crystallinity and molecular mobility in the amorphous regions of PHB is observed.

View Article and Find Full Text PDF

The growing amount of synthetic polymeric materials is a great environmental problem that has to be solved as soon as possible. The main factor aggravating this problem is the abundance of products made from traditional synthetic polymer, such as packaging materials, cases, containers and other equipment with a short period of use, which quickly turns into polymer waste that pollutes the ecosystem for decades. In this paper, we consider the possibility of solving this problem by the development of biodegradable compositions based on polyolefins and elastomers.

View Article and Find Full Text PDF

The comparison of the effect of porphyrins of natural and synthetic origin containing the same metal atom on the structure and properties of the semi-crystalline polymer matrix is of current concern. A large number of modifying additives and biodegradable polymers for biomedical purposes, composed of poly(-3-hydroxybutyrate)-porphyrin, are of particular interest because of the combination of their unique properties. The objective of this work are electrospun fibrous material based on poly(-3-hydroxybutyrate) (PHB), hemin (Hmi), and tetraphenylporphyrin with iron (Fe(TPP)Cl).

View Article and Find Full Text PDF

Recently, environmental problems caused by the overproduction and consumption of synthetic polymer materials led to an urgent need to develop efficient methods for processing plastics. The accumulation of polymer waste for their subsequent incineration does not solve the problem due to the limited areas of landfills for waste storage. In addition, the incineration of polymer waste can cause toxic air pollution, which, in turn, does not contribute to an improvement in the environmental situation.

View Article and Find Full Text PDF

The creation of innovative fibrous materials based on biodegradable semicrystalline polymers and modifying additives is an urgent scientific problem. In particular, the development of biomedical materials based on molecular complexes and biopolymers with controlled properties is of great interest. The paper suggests an approach to modifying the structure and properties of the composite materials based on poly(3-hydroxybutyrate) (PHB) obtained by the electrospinning method using molecular complexes of hemin.

View Article and Find Full Text PDF

Compounding natural additives with synthetic polymers allows developing more eco-friendly materials with enhanced biodegradability. The composite films based on low-density polyethylene (PE) with different content of natural rubber (NR) (10-30 wt%) were investigated. The influence of NR content on structural features, water absorption and mechanical properties of the composites were studied.

View Article and Find Full Text PDF

Five monomeric oxovanadium(V) complexes [VO(OMe)(NO)] with the nitro or halogen substituted quinolin-8-olate ligands were synthesized and characterized using Fourier transform infrared, H and C NMR, high-resolution mass spectrometry-electrospray ionization as well as X-ray diffraction and UV-vis spectroscopy. These complexes exhibit high catalytic activity toward oxidation of inert alkanes to alkyl hydroperoxides by HO in aqueous acetonitrile with the yield of oxygenate products up to 39% and turnover number 1780 for 1 h. The experimental kinetic study, the CD and O labeled experiments, and density functional theory (DFT) calculations allowed to propose the reaction mechanism, which includes the formation of HO· radicals as active oxidizing species.

View Article and Find Full Text PDF