Publications by authors named "Ivaylo Stoimenov"

Background: Loss of heterozygosity (LOH) diminishes genetic diversity within cancer genomes. A tumour arising in an individual heterozygous for a functional and a loss-of-function (LoF) allele of a gene occasionally retain only the LoF allele. This can result in deficiency of specific protein activities in cancer cells, creating unique differences between tumour cells and normal cells of the individual.

View Article and Find Full Text PDF

Background: Ephrin (EPH) receptors have been implicated in tumorigenesis and metastasis, but the functional understanding of mutations observed in human cancers is limited. We previously demonstrated reduced cell compartmentalisation for somatic EPHB1 mutations found in metastatic colorectal cancer cases. We therefore integrated pan-cancer and pan-EPH mutational data to prioritise recurrent EPHB1 mutations for functional studies to understand their contribution to cancer development and metastasis.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers discovered a new compound, CBK034026C, that selectively kills colorectal cancer (CRC) cells with high activity of the drug-metabolizing enzyme NAT2.
  • * The compound was found to activate certain cellular pathways and disrupt protective mechanisms in CRC cells, suggesting it could lead to new treatments by targeting unique metabolic vulnerabilities.
View Article and Find Full Text PDF

Therapies targeting somatic bystander genetic events represent a new avenue for cancer treatment. We recently identified a subset of colorectal cancer (CRC) patients who are heterozygous for a wild-type and a low activity allele (NAT2*6) but lack the wild-type allele in their tumors due to loss of heterozygosity (LOH) at 8p22. These tumors were sensitive to treatment with a cytotoxic substrate of NAT2 (6-(4-aminophenyl)-N-(3,4,5-trimethoxyphenyl)pyrazin-2-amine, APA), and pointed to NAT2 loss being a therapeutically exploitable vulnerability of CRC tumors.

View Article and Find Full Text PDF

We show that N-acetyltransferase 2 () loss of heterozygosity can be targeted in >4% of colorectal cancers with the use of a small molecule. We identify and describe the effect of a compound that impairs the growth of colorectal tumors with slow NAT2 activity by half when compared to wild-type.

View Article and Find Full Text PDF

Cancer chemotherapy targeting frequent loss of heterozygosity events is an attractive concept, since tumor cells may lack enzymatic activities present in normal constitutional cells. To find exploitable targets, we map prevalent genetic polymorphisms to protein structures and identify 45 nsSNVs (non-synonymous small nucleotide variations) near the catalytic sites of 17 enzymes frequently lost in cancer. For proof of concept, we select the gastrointestinal drug metabolic enzyme NAT2 at 8p22, which is frequently lost in colorectal cancers and has a common variant with 10-fold reduced activity.

View Article and Find Full Text PDF

The chromatin modifier is inactivated by mutation in several forms of cancer and is a putative tumor suppressor gene. Frameshift mutations in the C-terminal region of , affecting (A)8 or (A)9 repeats within exon 8, are found in one third of colorectal cancers with microsatellite instability, but the contribution of these mutations to colorectal tumorigenesis is unknown. To model somatic mutations in microsatellite unstable tumors, we devised a general approach to perform genome editing while stabilizing the mutated nucleotide repeat.

View Article and Find Full Text PDF

The rapid discovery of potential driver mutations through large-scale mutational analyses of human cancers generates a need to characterize their cellular phenotypes. Among the techniques for genome editing, recombinant adeno-associated virus (rAAV)-mediated gene targeting is suited for knock-in of single nucleotide substitutions and to a lesser degree for gene knock-outs. However, the generation of gene targeting constructs and the targeting process is time-consuming and labor-intense.

View Article and Find Full Text PDF

Ultraviolet (UV)-induced DNA damage causes an efficient block of elongating replication forks. The checkpoint kinase, CHK1 has been shown to stabilize replication forks following hydroxyurea treatment. Therefore, we wanted to test if the increased UV sensitivity caused by the unspecific kinase inhibitor caffeine--inhibiting ATM and ATR amongst other kinases--is explained by inability to activate the CHK1 kinase to stabilize replicative structures.

View Article and Find Full Text PDF

Background: The proliferating cell nuclear antigen (PCNA) is a key protein in the eukaryotic DNA replication and cell proliferation. Following the cloning and characterisation of the human PCNA gene, the question of the existence of pseudogenes in the human genome was raised.

Findings: In this short communication we summarise the existing information about the PCNA pseudogenes and critically assess their status.

View Article and Find Full Text PDF

Homologous recombination (HR) is intricately associated with replication, transcription and DNA repair in all organisms studied. However, the interplay between all these processes occurring simultaneously on the same DNA molecule is still poorly understood. Here, we study the interplay between transcription and HR during ultraviolet light (UV)-induced DNA damage in mammalian cells.

View Article and Find Full Text PDF

Transcription, replication and homologous recombination are intrinsically connected and it is well established that an increase of transcription is associated with an increase in homologous recombination. Here, we have studied how homologous recombination is affected during transcription inhibition by 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), a compound that prevents activating phosphorylations of the RNA Pol II C-terminal domain. We identify that DRB triggers an increase in homologous recombination within the hprt gene as well as increasing RAD51 foci formation in mammalian cells.

View Article and Find Full Text PDF

Familial breast and ovarian cancers are often defective in homologous recombination (HR) due to mutations in the BRCA1 or BRCA2 genes. Cisplatin chemotherapy or poly(ADP-ribose) polymerase (PARP) inhibitors were tested for these tumors in clinical trials. In a screen for novel drugs that selectively kill BRCA2-defective cells, we identified 6-thioguanine (6TG), which induces DNA double-strand breaks (DSB) that are repaired by HR.

View Article and Find Full Text PDF

Cancer is caused by genetic changes that often arise following failure to accurately replicate the DNA. PCNA (proliferating-cell nuclear antigen) forms a ring around the DNA to facilitate and control DNA replication. Emerging evidence suggests that PCNA is at the very heart of many essential cellular processes, such as DNA replication, repair of DNA damage, chromatin structure maintenance, chromosome segregation and cell-cycle progression.

View Article and Find Full Text PDF

Host cell reactivation assay using Trioxsalen-crosslinked plasmid pEGFP-N1 showed that human cells were able to repair Trioxsalen interstrand crosslinks (ICL). To study the mechanism of this repair pathway, cells were transfected with the plasmids pEGFP-1, which did not contain the promoter of the egfp gene, and with pEGFP-G-, which did not contain the egfp gene. Neither of these plasmids alone was able to express the green fluorescent protein.

View Article and Find Full Text PDF