Publications by authors named "Ivars Petrovskis"

Virus-like particles (VLPs) offer an attractive possibility for the development of vaccines. Recombinant core antigen (HBc) of Hepatitis B virus (HBV) was expressed in different systems, and the expression system was shown to be effective for the production of HBc VLPs. Here, we used HBc of the HBV genotype G (HBc/G) as a technologically promising VLP carrier for the presentation of spike RBM and nucleocapsid protein-derived peptides of the SARS-CoV-2 Delta variant for subsequent immunological evaluations of obtained fusion proteins.

View Article and Find Full Text PDF

The available HBV vaccines based on the HBV surface protein are manufactured in yeasts and demonstrate excellent prophylactic but no therapeutic activity and are thus ineffective against chronic HBV infection. Five different HBV core proteins (HBc)-full length and C-terminally truncated-were used for the insertion of the short, preS1,aa 20-47 and long, preS1phil, aa 12-60 + 89-119 fragments. Modified virus-like particles (VLPs) were compared for their biotechnological and immunological properties.

View Article and Find Full Text PDF

The core proteins (HBc) of the hepatitis B virus (HBV) genotypes A, B, C, D, E, F, and G were cloned and expressed in ), and HBc-formed virus-like particles (VLPs) were purified with ammonium sulfate precipitation, gel filtration, and ion exchange chromatography (IEX). The best VLP yield was found for the HBc of the HBV genotypes D and G. For the HBc of the HBV genotypes D, F, and G, the possibility of dissociation and reassociation maintaining the native HBc structure was demonstrated.

View Article and Find Full Text PDF

Lyme disease is a tick-borne infection caused by Borrelia burgdorferi sensu lato complex spirochetes. Through a complex enzootic cycle, the bacteria transfer between two different hosts: Ixodes ticks and mammalian organisms. At the start of the tick blood meal, the spirochetes located in the tick gut upregulate the expression of several genes, mainly coding for outer surface proteins.

View Article and Find Full Text PDF

Lyme disease is a tick-borne infection caused by Borrelia burgdorferi sensu lato complex spirochetes. The spirochete is located in the gut of the tick; as the infected tick starts the blood meal, the spirochete must travel through the hemolymph to the salivary glands, where it can spread to and infect the new host organism. In this study, we determined the crystal structures of the key outer surface protein BBE31 from B.

View Article and Find Full Text PDF

The periplasmic lipoprotein BB0365 of the Lyme disease agent Borrelia burgdorferi is expressed throughout mammalian infection and is essential for all phases of Lyme disease infection; its function, however, remains unknown. In the current study, our structural analysis of BB0365 revealed the same structural fold as that found in the NqrC and RnfG subunits of the NADH:quinone and ferredoxin:NAD sodium-translocating oxidoreductase complexes, which points to a potential role for BB0365 as a component of the sodium pump. Additionally, BB0365 coordinated Zn by the His51, His55, His140 residues, and the Zn -binding site indicates that BB0365 could act as a potential metalloenzyme; therefore, this structure narrows down the potential functions of BB0365, an essential protein for B.

View Article and Find Full Text PDF

The spirochete Borrelia burgdorferi sensu lato is the causative agent of Lyme borreliosis - the most common tick-borne disease in Europe and the United States. Spirochetes are transmitted from infected Ixodes ticks to the mammalian host when the ticks feed. In general, the transfer process of the borreliae is quite complicated, as the environments in the tick and the new mammalian host differs significantly.

View Article and Find Full Text PDF

Recent studies on the primate protection from HCV infection stressed the importance of immune response against structural viral proteins. Strong immune response against nucleocapsid (core) protein was difficult to achieve, requesting further experimentation in large animals. Here, we analyzed the immunogenicity of core aa 1-173, 1-152, and 147-191 and of its main alternative reading frame product F-protein in rabbits.

View Article and Find Full Text PDF

The major immunodominant region (MIR) and N-terminus of the hepatitis B virus (HBV) core (HBc) protein were used to expose foreign insertions on the outer surface of HBc virus-like particles (VLPs). The additions to the HBc positively charged arginine-rich C-terminal (CT) domain are usually not exposed on the VLP surface. Here, we constructed a set of recombinant HBcG vectors in which CT arginine stretches were substituted by glycine residues.

View Article and Find Full Text PDF

Spirochete Borrelia burgdorferi is the causative agent of Lyme disease and is transmitted from infected Ixodes ticks to a mammalian host after a tick bite. The outer surface protein BB0689 from B. burgdorferi is up-regulated when the tick feeds, which indicates a potential role for BB0689 in Lyme disease pathogenesis.

View Article and Find Full Text PDF

Borrelia burgdorferi is the causative agent of Lyme disease, which can be acquired after the bite of an infected Ixodes tick. As a strategy to resist the innate immunity and to successfully spread and proliferate, B. burgdorferi expresses a set of outer membrane proteins that are capable of binding complement regulator factor H (CFH), factor H-like protein 1 (CFHL-1) and factor H-related proteins (CFHR) to avoid complement-mediated killing.

View Article and Find Full Text PDF

Advances in nanotechnology and nanomaterials have facilitated the development of silicon dioxide, or Silica, particles as a promising immunological adjuvant for the generation of novel prophylactic and therapeutic vaccines. In the present study, we have compared the adjuvanting potential of commercially available Silica nanoparticles (initial particles size of 10-20 nm) with that of aluminium hydroxide, or Alum, as well as that of complete and incomplete Freund's adjuvants for the immunisation of BALB/c mice with virus-like particles (VLPs) formed by recombinant full-length Hepatitis B virus core (HBc) protein. The induction of B-cell and T-cell responses was studied after immunisation.

View Article and Find Full Text PDF

Borrelia burgdorferi is the causative agent of Lyme disease and is found in two different types of hosts in nature - Ixodes ticks and various mammalian organisms. To initiate disease and survive in mammalian host organisms, B. burgdorferi must be able to transfer to a new host, proliferate, attach to different tissue and resist the immune response.

View Article and Find Full Text PDF

Borrelia burgdorferi, the causative agent of Lyme disease is transmitted to the mammalian host organisms by infected Ixodes ticks. Transfer of the spirochaetal bacteria from Ixodes ticks to the warm-blooded mammalian organism provides a challenge for the bacteria to adapt and survive in the different environmental conditions. B.

View Article and Find Full Text PDF

An efficient pBR327- and Ptrp-based E. coli expression system was used to generate a large-scale library of virus like particles (VLP) formed by recombinant hepatitis B virus (HBV) core (HBc) protein derivatives. To construct the library, the gene of HBc protein of the genotype D/subtype ayw2 virus was gradually truncated from the 3`-end and twenty-two HBc variants (with truncation up to 139 aa) were expressed at high levels.

View Article and Find Full Text PDF

Three variants of the major rubella virus (RV) E1 protein virus-neutralizing epitope from position 214 to 285 were exposed on the hepatitis B virus (HBV) C-terminally truncated core (HBcΔ) in a virus-like particle (VLP) vector and were produced in Escherichia coli. All three chimeras demonstrated VLPs in bacterial cell lysates, but only HBcΔ-E1(245-285) demonstrated the correct VLP structure after purification. The other chimeras, HBcΔ-E1(214-285) and HBcΔ-E1(214-240), appeared after purification as non-VLP aggregates of 100 to 900 nm in diameter according to dynamic light scattering data.

View Article and Find Full Text PDF

Lyme disease is a tick-borne infection caused by the transmission of Borrelia burgdorferi from infected Ixodes ticks to a mammalian host during the blood meal. Previous studies have shown that the expression of B. burgdorferi surface-localized lipoproteins, which include BBA64, is up-regulated during the process of tick feeding.

View Article and Find Full Text PDF

Borrelia burgdorferi, which is the causative agent of Lyme disease, is transmitted from infected Ixodes ticks to a mammalian host following a tick bite. Upon changing the host organism from an Ixodes tick to a warm-blooded mammal, the spirochete must adapt to very different conditions, which is achieved by altering the expression of several genes in response to a changing environment. Recently, considerable attention has been devoted to several outer surface proteins, including BBA73, that undergo dramatic upregulation during the transmission of B.

View Article and Find Full Text PDF

Unlabelled: Virus-like particles (VLPs) are created by the self-assembly of multiple copies of envelope and/or capsid proteins from many viruses, mimicking the conformation of a native virus. Such noninfectious nanostructures are mainly used as antigen-presenting platforms, especially in vaccine research; however, some of them recently were used as scaffolds in biotechnology to produce targeted nanoparticles for intracellular delivery. This study demonstrates the creation of fusion VLPs using hepatitis B core protein-based system maintaining a fibronectin-binding property from B.

View Article and Find Full Text PDF

Plasmids pQE-60 and pQE-30 containing 6 x His-tag sequence were used for expression of fragments of HCV structural and non-structural proteins in Escherichia coli (E. coli). The following fragments were used: core (1-98 aa), NS3 (202-482 aa), and tetramer of hypervariable region 1 (HVR1) of E2 protein.

View Article and Find Full Text PDF

The major aim of the project was the development of virus-like particles (VLP) displaying B- and T-cell epitopes of hepatitis C virus (HCV) proteins. To this end, hepatitis B virus core (HBc) particles were used as a carrier of HCV epitopes. Fragments of HCV genes encoding core (aa 98) and NS3 (aa 155) proteins were fused to the 3' terminus of the truncated HBV core gene.

View Article and Find Full Text PDF

Hepatitis B virus (HBV) core particles carrying the amino-terminal 120 amino acids (aa) of the nucleocapsid (N) protein of the hantaviruses Dobrava, Hantaan or Puumala have been demonstrated to be highly immunogenic in mice when complexed with adjuvants. Here we demonstrate that even without adjuvant, these chimeric particles induced high-titered, and strongly cross-reactive N-specific antibody responses in BALB/c and C57BL/6 mice. The induced N-specific antibodies represented all IgG subclasses.

View Article and Find Full Text PDF

Previously, we have demonstrated that hepatitis B virus (HBV) core particles tolerate the insertion of the amino-terminal 120 amino acids (aa) of the Puumala hantavirus nucleocapsid (N) protein. Here, we demonstrate that the insertion of 120 amino-terminal aa of N proteins from highly virulent Dobrava and Hantaan hantaviruses allows the formation of chimeric core particles. These particles expose the inserted foreign protein segments, at least in part, on their surface.

View Article and Find Full Text PDF

In recent years, epitopes of various origin have been inserted into the core protein of hepatitis B virus (HBc), allowing the formation of chimeric HBc particles. Although the C-terminus of a C-terminally truncated HBc (HBc) tolerates the insertion of extended foreign sequences, the insertion capacity is still a limiting factor for the construction of multivalent vaccines. Previously, we described a new system to generate HBc mosaic particles based on a read-through mechanism in an Escherichia coli suppressor strain [J Gen Virol 1997;78:2049-2053].

View Article and Find Full Text PDF