Chagas disease is caused by the parasite , and the lack of effective and safe treatments makes identifying new classes of compounds with anti- activity of paramount importance. Hit-to-lead exploration of a metabolically stable -imidazoylpiperazine was performed. Compound , a piperazine derivative active against , was selected to perform the hit-to-lead exploration, which involved the design, synthesis and biological evaluation of 39 new derivatives.
View Article and Find Full Text PDFCruzain, the main cysteine protease of , plays key roles in all stages of the parasite's life cycle, including nutrition acquisition, differentiation, evasion of the host immune system, and invasion of host cells. Thus, inhibition of this validated target may lead to the development of novel drugs for the treatment of Chagas disease. In this study, a multiparameter optimization (MPO) approach, molecular modeling, and structure-activity relationships (SARs) were employed for the identification of new benzimidazole derivatives as potent competitive inhibitors of cruzain with trypanocidal activity and suitable pharmacokinetics.
View Article and Find Full Text PDFCyclooxygenase (COX) and lipoxygenase (LOX) are key targets for the development of new anti-inflammatory agents. LOX, which is involved in the biosynthesis of mediators in inflammation and allergic reactions, was selected for a biochemical screening campaign to identify LOX inhibitors by employing the main natural product library of Brazilian biodiversity. Two prenyl chalcones were identified as potent inhibitors of LOX-1 in the screening.
View Article and Find Full Text PDFIn the present study, a series of chalcones and their B-aryl analogues were prepared and evaluate as inhibitors of myeloperoxidase (MPO) chlorinating activity, using in vitro and ex vivo assays. Among these, B-thiophenyl chalcone (analogue 9) demonstrated inhibition of in vitro and ex vivo MPO chlorinating activity, exhibiting IC value of 0.53 and 19.
View Article and Find Full Text PDFChagas disease causes ~10,000 deaths each year, mainly in Latin America, where it is endemic. The currently available chemotherapeutic agents are ineffective in the chronic stage of the disease, and the lack of pharmaceutical innovation for Chagas disease highlights the urgent need for the development of new drugs. The enzyme cruzain, the main cysteine protease of , has been explored as a validated molecular target for drug discovery.
View Article and Find Full Text PDFAim: Chagas disease is endemic in Latin America and no effective treatment is available. Efforts in drug research have focused on several enzymes from Trypanosoma cruzi, among which cruzain is a validated pharmacological target.
Methodology: Chemometric analyses were performed on the data set using the hologram quantitative structure-activity relationship, comparative molecular field analysis and comparative molecular similarity index analysis methods.
Novel chemotherapeutics agents are needed to kill Mycobacterium tuberculosis, the main causative agent of tuberculosis (TB). The M. tuberculosis 2-trans-enoyl-ACP(CoA) reductase enzyme (MtInhA) is the druggable bona fide target of isoniazid.
View Article and Find Full Text PDFThe development of cruzain inhibitors has been driven by the urgent need to develop novel and more effective drugs for the treatment of Chagas' disease. Herein, we report the lead optimization of a class of noncovalent cruzain inhibitors, starting from an inhibitor previously cocrystallized with the enzyme (K(i) = 0.8 μM).
View Article and Find Full Text PDFMycobacterium tuberculosis InhA (MtInhA) is an attractive enzyme to drug discovery efforts due to its validation as an effective biological target for tuberculosis therapy. In this work, two different virtual-ligand-screening approaches were applied in order to identify new InhA inhibitors' candidates from a library of ligands selected from the ZINC database. First, a 3-D pharmacophore model was built based on 36 available MtInhA crystal structures.
View Article and Find Full Text PDFInhA, the NADH-dependent 2-trans-enoyl-ACP reductase enzyme from Mycobacterium tuberculosis (MTB), is involved in the biosynthesis of mycolic acids, the hallmark of mycobacterial cell wall. InhA has been shown to be the primary target of isoniazid (INH), one of the oldest synthetic antitubercular drugs. INH is a prodrug which is biologically activated by the MTB catalase-peroxidase KatG enzyme.
View Article and Find Full Text PDFIn humans, purine nucleoside phosphorylase (HsPNP) is responsible for degradation of deoxyguanosine, and genetic deficiency of this enzyme leads to profound T-cell mediated immunosuppression. HsPNP is a target for inhibitor development aiming at T-cell immune response modulation. Here we report the crystal structure of HsPNP in complex with 7-deazaguanine (HsPNP:7DG) at 2.
View Article and Find Full Text PDFThe study of protein-drug interaction is of pivotal importance to understand the structural features essential for ligand affinity. The explosion of information about protein structures has paved the way to develop structure-based virtual screening approaches. Parasitic protein kinases have been pointed out as potential targets for antiparasitic development.
View Article and Find Full Text PDFThe development of databases devoted to biological information opened the possibility to integrate, query and analyze biological data obtained from several sources that otherwise would be scattered through the web. Several issues arise in the handling of biological information, mainly due to the diversity of biological subject matter and the complexity of biological approaches towards phenomena of the living world. The integration of genomic data, three-dimensional structures of proteins, biological activity, and drugs availability allows a system approach to the study of the biology.
View Article and Find Full Text PDFDrug development has become the Holy Grail of many structural bioinformatics groups. The explosion of information about protein structures, ligand-binding affinity, parasite genome projects, and biological activity of millions of molecules opened the possibility to correlate this scattered information in order to generate reliable computational models to predict the likelihood of being able to modulate a target with a small-molecule drug. Computational methods have shown their potential in drug discovery and development allied with in vitro and in vivo methodologies.
View Article and Find Full Text PDFPurine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of N-ribosidic bonds of purine nucleosides and deoxynucleosides, except adenosine, to generate ribose 1-phosphate and the purine base. This work describes for the first time a structural model of PNP from Bacteroides fragilis (Bf). We modeled the complexes of BfPNP with six different ligands in order to determine the structural basis for specificity of these ligands against BfPNP.
View Article and Find Full Text PDFRecent developments in computer power and chemoinformatics methodology make possible that a huge amount of data become available through internet. These databases are devoted to a wide spectrum of scientific fields. Here we are concerned with databases related to protein-drug interactions.
View Article and Find Full Text PDFWith the progression of structural genomics projects, comparative modeling remains an increasingly important method of choice to obtain 3D structure of proteins. It helps to bridge the gap between the available sequence and structure information by providing reliable and accurate protein models. Comparative modeling based on more than 30% sequence identity is now approaching its natural template-based limits and further improvements require the development of effective refinement techniques capable of driving models toward native structure.
View Article and Find Full Text PDFMolecular recognition process describes the interaction involving two molecules. In the case of biomolecules, these pairs of molecules could be protein-protein, protein-ligand or protein-nucleic acid. The first model to capture the essential features, behind the molecular recognition problem, was the lock-and-key paradigm.
View Article and Find Full Text PDFDrug development is a high cost and laborious process, requiring a number of tests until a drug is made available in the market. Therefore, the use of methods to screen large number of molecules with less cost is crucial for faster identification of hits and leads. One strategy to identify drug-like molecules is the search for molecules able to interfere with a protein function, since protein interactions control most biological processes.
View Article and Find Full Text PDFBacillus anthracis has been used as weapon in bioterrorist activities, with high mortality, despite anti-microbial treatment, which strongly indicates a need of new drugs to treat anthrax. Shikimate Pathway is a seven-step biosynthetic route which generates chorismic acid. The shikimate pathway is essential for many pathological organisms, whereas it is absent in mammals.
View Article and Find Full Text PDF