Publications by authors named "Ivana Zrinski"

A broad compositional range of Nb-Ti anodic memristors with volatile and self-rectifying behaviour was studied using a combinatorial screening approach. A Nb-Ti thin-film combinatorial library was co-deposited by sputtering, serving as the bottom electrode for the memristive devices. The library, with a compositional spread ranging between 22 and 64 at.

View Article and Find Full Text PDF

The development of novel materials with coexisting volatile threshold and non-volatile memristive switching is crucial for neuromorphic applications. Hence, the aim of this work was to investigate the memristive properties of oxides in a Hf-Nb thin-film combinatorial system deposited by sputtering on Si substrates. The active layer was grown anodically on each Hf-Nb alloy from the library, whereas Pt electrodes were deposited as the top electrodes.

View Article and Find Full Text PDF

The aim of this study was to develop memristors based on NbO grown by a simple and inexpensive electrochemical anodization process. It was confirmed that the electrolyte selection plays a crucial role in resistive switching due to electrolyte species incorporation in oxide, thus influencing the formation of conductive filaments. Anodic memristors grown in phosphate buffer showed improved electrical characteristics, while those formed in citrated buffer exhibited excellent memory capabilities.

View Article and Find Full Text PDF

Composite memristors based on anodic oxidation of Hf superimposed on Ta thin films are studied. A layered structure is obtained by successive sputtering of Ta and Hf thin films. The deposition geometry ensured components' thickness gradient profiles (wedges) aligned in opposite directions.

View Article and Find Full Text PDF

Anodic HfO memristors grown in phosphate, borate, or citrate electrolytes and formed on sputtered Hf with Pt top electrodes are characterized at fundamental and device levels. The incorporation of electrolyte species deep into anodic memristors concomitant with HfO crystalline structure conservation is demonstrated by elemental analysis and atomic scale imaging. Upon electroforming, retention and endurance tests are performed on memristors.

View Article and Find Full Text PDF