Publications by authors named "Ivana Schneedorferova"

Fatty acids are essential components of biological membranes, important for the maintenance of cellular structures, especially in organisms with complex life cycles like protozoan parasites. Apicomplexans are obligate parasites responsible for various deadly diseases of humans and livestock. We analyzed the fatty acids produced by the closest phototrophic relatives of parasitic apicomplexans, the chromerids and , and investigated the genes coding for enzymes involved in fatty acids biosynthesis in chromerids, in comparison to their parasitic relatives.

View Article and Find Full Text PDF

The alveolate algae Chromera velia and Vitrella brassicaformis (chromerids) are the closest known phototrophic relatives to apicomplexan parasites. Apicomplexans are responsible for fatal diseases of humans and animals and severe economic losses. Availability of the genome sequences of chromerids together with easy and rapid culturing of C.

View Article and Find Full Text PDF

Immune defense is energetically costly, and thus an effective response requires metabolic adaptation of the organism to reallocate energy from storage, growth, and development towards the immune system. We employ the natural infection of Drosophila with a parasitoid wasp to study energy regulation during immune response. To combat the invasion, the host must produce specialized immune cells (lamellocytes) that destroy the parasitoid egg.

View Article and Find Full Text PDF

The aim of this study was to compare the effect of different heat treatments (pan-frying, oven-baking, and grilling) on the contents of polyunsaturated fatty acids (PUFAs) in fish tissue. Four fish species were examined: pike, carp, cod, and herring. High performance liquid chromatography, coupled with electrospray ionization and mass spectrometric detection (HPLC/ESI/MS), was employed for determination of intact lipid molecules containing n-3 and n-6 PUFAs.

View Article and Find Full Text PDF

The quantification of phospholipid classes and the determination of their molecular structures are crucial in physiological and medical studies. This paper's target analytes are cell membrane phospholipids, which play an important role in the seasonal acclimation processes of poikilothermic organisms. We introduce a set of simple and cost-effective analytical methods that enable efficient characterization and quantification of particular phospholipid classes and the identification and relative distribution of the individual phospholipid species.

View Article and Find Full Text PDF