Degradation of the endoplasmic reticulum (ER) via selective autophagy (ER-phagy) is vital for cellular homeostasis. We identify FAM134A/RETREG2 and FAM134C/RETREG3 as ER-phagy receptors, which predominantly exist in an inactive state under basal conditions. Upon autophagy induction and ER stress signal, they can induce significant ER fragmentation and subsequent lysosomal degradation.
View Article and Find Full Text PDFThe transcription factor EB (TFEB) has emerged as a master regulator of lysosomal biogenesis, exocytosis, and autophagy, promoting the clearance of substrates stored in cells. c-Abl is a tyrosine kinase that participates in cellular signaling in physiological and pathophysiological conditions. In this study, we explored the connection between c-Abl and TFEB.
View Article and Find Full Text PDFDiscriminating transcriptional changes that drive disease pathogenesis from nonpathogenic and compensatory responses is a daunting challenge. This is particularly true for neurodegenerative diseases, which affect the expression of thousands of genes in different brain regions at different disease stages. Here we integrate functional testing and network approaches to analyze previously reported transcriptional alterations in the brains of Huntington disease (HD) patients.
View Article and Find Full Text PDFRibosomopathies are a family of inherited disorders caused by mutations in genes necessary for ribosomal function. Shwachman-Diamond Bodian Syndrome (SDS) is an autosomal recessive disease caused, in most patients, by mutations of the SBDS gene. SBDS is a protein required for the maturation of 60S ribosomes.
View Article and Find Full Text PDFAutophagy dysfunction is a common feature in neurodegenerative disorders characterized by accumulation of toxic protein aggregates. Increasing evidence has demonstrated that activation of TFEB (transcription factor EB), a master regulator of autophagy and lysosomal biogenesis, can ameliorate neurotoxicity and rescue neurodegeneration in animal models. Currently known TFEB activators are mainly inhibitors of MTOR (mechanistic target of rapamycin [serine/threonine kinase]), which, as a master regulator of cell growth and metabolism, is involved in a wide range of biological functions.
View Article and Find Full Text PDFBackground: Transcription factors (TFs) act downstream of the major signalling pathways functioning as master regulators of cell fate. Their activity is tightly regulated at the transcriptional, post-transcriptional and post-translational level. Proteins modifying TF activity are not easily identified by experimental high-throughput methods.
View Article and Find Full Text PDFThe view of the lysosome as the terminal end of cellular catabolic pathways has been challenged by recent studies showing a central role of this organelle in the control of cell function. Here we show that a lysosomal Ca2+ signalling mechanism controls the activities of the phosphatase calcineurin and of its substrate TFEB, a master transcriptional regulator of lysosomal biogenesis and autophagy. Lysosomal Ca2+ release through mucolipin 1 (MCOLN1) activates calcineurin, which binds and dephosphorylates TFEB, thus promoting its nuclear translocation.
View Article and Find Full Text PDFBackground: Inherited retinal dystrophies, including Retinitis Pigmentosa and Leber Congenital Amaurosis among others, are a group of genetically heterogeneous disorders that lead to variable degrees of visual deficits. They can be caused by mutations in over 100 genes and there is evidence for the presence of as yet unidentified genes in a significant proportion of patients. We aimed at identifying a novel gene for an autosomal recessive form of early onset severe retinal dystrophy in a patient carrying no previously described mutations in known genes.
View Article and Find Full Text PDFUsher syndrome (USH) is a clinically and genetically heterogeneous disorder characterized by visual and hearing impairments. Clinically, it is subdivided into three subclasses with nine genes identified so far. In the present study, we investigated whether the currently available Next Generation Sequencing (NGS) technologies are already suitable for molecular diagnostics of USH.
View Article and Find Full Text PDFAscertaining when and where genes are expressed is of crucial importance to understanding or predicting the physiological role of genes and proteins and how they interact to form the complex networks that underlie organ development and function. It is, therefore, crucial to determine on a genome-wide level, the spatio-temporal gene expression profiles at cellular resolution. This information is provided by colorimetric RNA in situ hybridization that can elucidate expression of genes in their native context and does so at cellular resolution.
View Article and Find Full Text PDFBackground: MicroRNAs (miRNAs) are key regulators of biological processes. To define miRNA function in the eye, it is essential to determine a high-resolution profile of their spatial and temporal distribution.
Results: In this report, we present the first comprehensive survey of miRNA expression in ocular tissues, using both microarray and RNA in situ hybridization (ISH) procedures.
We report on a female patient with severe infantile spasms, profound global developmental arrest, hypsarrhythmia and severe mental retardation, associated with a de novo apparently balanced X;autosome translocation. Her neurological phenotype resembles that of X-linked infantile spasms (ISSX). Molecular study showed that the translocation disrupts a transcript involved in GTPases signalling, IQSEC2, mapped to the Xp11.
View Article and Find Full Text PDFEmbryonic stem (ES) cells are pluripotent cell lines with the capacity of self-renewal and the ability to differentiate into specific cell types. We performed the first genome-wide analysis of the mouse ES cell transcriptome using approximately 250,000 gene trap sequence tags deposited in public databases. We unveiled >8000 novel transcripts, mostly non-coding, and >1000 novel alternative and often tissue-specific exons of known genes.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
February 2007
Purpose: MicroRNAs (miRNAs) are a class of small, endogenous RNAs that negatively regulate gene expression post-transcriptionally by binding to target sites in the 3' untranslated region (UTR) of messenger RNAs. Although they have been found to regulate developmental and physiological processes in several organs and tissues, their role in the eye transcriptome is completely unknown. This study was conducted to gain understanding of their eye-related function in mammals, by looking for miRNAs significantly expressed in the mouse eye by means of high-resolution expression analysis.
View Article and Find Full Text PDFCarnitine transporters have recently been implicated in susceptibility to inflammatory bowel disease (IBD). Because carnitine is required for beta-oxidation, it was suggested that decreased carnitine transporters, and hence reduced carnitine uptake, could lead to impaired fatty acid oxidation in intestinal epithelial cells, and to cell injury. We investigated this issue by examining the expression of the carnitine transporters OCTN2 and ATB0+, and butyrate metabolism in colonocytes in a rat model of IBD induced by trinitrobenzene sulfonic acid (TNBS).
View Article and Find Full Text PDFSpecific silencing of target genes can be induced in a variety of organisms by providing homologous double-stranded RNA molecules. In vivo, these molecules can be generated either by transcription of sequences having an inverted-repeat (IR) configuration or by simultaneous transcription of sense-antisense strands. Since IR constructs are difficult to prepare and can stimulate genomic rearrangements, we investigated the silencing potential of symmetrically transcribed sequences.
View Article and Find Full Text PDF