Tumor-specific CD8+ T cells are key effectors of antitumor immunity but are often rendered dysfunctional in the tumor microenvironment. Immune-checkpoint blockade can restore antitumor T-cell function in some patients; however, most do not respond to this therapy, often despite T-cell infiltration in their tumors. We here explored a CD8-targeted IL2 fusion molecule (CD8-IL2) to selectively reactivate intratumoral CD8+ T cells in patient-derived tumor fragments.
View Article and Find Full Text PDFIL2 signals pleiotropically on diverse cell types, some of which contribute to therapeutic activity against tumors, whereas others drive undesired activity, such as immunosuppression or toxicity. We explored the theory that targeting of IL2 to CD8+ T cells, which are key antitumor effectors, could enhance its therapeutic index. To this aim, we developed AB248, a CD8 cis-targeted IL2 that demonstrates over 500-fold preference for CD8+ T cells over natural killer and regulatory T cells (Tregs), which may contribute to toxicity and immunosuppression, respectively.
View Article and Find Full Text PDFThe IL-23 pathway is genetically linked to autoimmune disease in humans and is required for pathogenic Th17 cell function in mice. However, because IL-23R-expressing mature Th17 cells are rare and poorly defined in mice at steady-state, little is known about IL-23 signaling. In this study, we show that the endogenous CCR6(+) memory T cell compartment present in peripheral lymphoid organs of unmanipulated mice expresses Il23r ex vivo, displays marked proinflammatory responses to IL-23 stimulation in vitro, and is capable of transferring experimental autoimmune encephalomyelitis.
View Article and Find Full Text PDFIL-17A-expressing CD4(+) T cells (Th17 cells) are generally regarded as key effectors of autoimmune inflammation. However, not all Th17 cells are pro-inflammatory. Pathogenic Th17 cells that induce autoimmunity in mice are distinguished from nonpathogenic Th17 cells by a unique transcriptional signature, including high Il23r expression, and these cells require Il23r for their inflammatory function.
View Article and Find Full Text PDFFollicular helper T cells (Tfh cells) are the major producers of interleukin-4 (IL-4) in secondary lymphoid organs where humoral immune responses develop. Il4 regulation in Tfh cells appears distinct from the classical T helper 2 (Th2) cell pathway, but the underlying molecular mechanisms remain largely unknown. We found that hypersensitivity site V (HS V; also known as CNS2), a 3' enhancer in the Il4 locus, is essential for IL-4 production by Tfh cells.
View Article and Find Full Text PDFHuman memory T cells (T(M) cells) that produce IL-17 or IL-22 are currently defined as Th17 or Th22 cells, respectively. These T cell lineages are almost exclusively CCR6(+) and are important mediators of chronic inflammation and autoimmunity. However, little is known about the mechanisms controlling IL-17/IL-22 expression in memory Th17/Th22 subsets.
View Article and Find Full Text PDFActivation of naive CD8(+) T cells with antigen induces their differentiation into effector cytolytic T lymphocytes (CTLs). CTLs lyse infected or aberrant target cells by exocytosis of lytic granules containing the pore-forming protein perforin and a family of proteases termed granzymes. We show that effector CTL differentiation occurs in two sequential phases in vitro, characterized by early induction of T-bet and late induction of Eomesodermin (Eomes), T-box transcription factors that regulate the early and late phases of interferon (IFN) gamma expression, respectively.
View Article and Find Full Text PDFMembers of the Runx family of transcription factors, Runx1-3, are essential regulators of the immune system: a deficiency in one of the members, Runx1, results in complete ablation of hematopoiesis, and all three Runx proteins play important, nonredundant roles in immune system development and function. Here, we review gene regulation by Runx proteins in T lymphocytes, with a focus on their recently emerging roles in the development and function of peripheral CD4+ and CD8+ T lineages.
View Article and Find Full Text PDFCell differentiation involves activation and silencing of lineage-specific genes. Here we show that the transcription factor Runx3 is induced in T helper type 1 (T(H)1) cells in a T-bet-dependent manner, and that both transcription factors T-bet and Runx3 are required for maximal production of interferon-gamma (IFN-gamma) and silencing of the gene encoding interleukin 4 (Il4) in T(H)1 cells. T-bet does not repress Il4 in Runx3-deficient T(H)2 cells, but coexpression of Runx3 and T-bet induces potent repression in those cells.
View Article and Find Full Text PDFHelper T cell differentiation involves silencing as well as activation of gene expression. We have identified a conserved silencer of the gene encoding interleukin 4 (Il4) marked by DNase I hypersensitivity (HS IV) and permissive chromatin structure in all helper T cells. Deletion of HS IV increased Il4 and Il13 transcription by naive T cells and led to T helper type 2 skewing in vitro.
View Article and Find Full Text PDF