The tools and techniques developed for analytical cytology have become invaluable in expanding the development of cancer screening programs and biomarker discovery for personalized medicine. Detecting cellular, molecular, and functional changes of diseased tissue as defined by quantitative analytical methodologies has enhanced the field of medical diagnostics and prognostics. The focus of this review is to outline applications and recent technical advances in flow cytometry, laser scanning cytometry, image cytometry, and quantitative image analysis, as they pertain to clinical, research, and drug discovery applications.
View Article and Find Full Text PDFPurpose: To efficiently translate experimental methods from bench to bedside, it is imperative that laboratory models of cancer mimic human disease as closely as possible. In this study, we sought to compare patterns of hypoxia in several standard and emerging mouse models of lung cancer to establish the appropriateness of each for evaluating the role of oxygen in lung cancer progression and therapeutic response.
Experimental Design: Subcutaneous and orthotopic human A549 lung carcinomas growing in nude mice as well as spontaneous K-ras or Myc-induced lung tumors grown in situ or subcutaneously were studied using fluorodeoxyglucose and fluoroazomycin arabinoside positron emission tomography, and postmortem by immunohistochemical observation of the hypoxia marker pimonidazole.