Fourteen donepezil-like acetylcholinesterase (AChE) inhibitors from our library were analyzed using reversed-phase thin-layer chromatography to assess their lipophilicity and blood-brain barrier permeability. Compounds possessed N-benzylpiperidine and N,N-diarylpiperazine moieties connected via a short carboxamide or amine linker. Retention parameters R , b, and C were considered as the measures of lipophilicity.
View Article and Find Full Text PDFSimple and scalable synthetic approach was used for the preparation of thirteen novel tacrine derivatives consisting of tacrine and N-aryl-piperidine-4-carboxamide moiety connected by a five-methylene group linker. An anti-Alzheimer disease (AD) potential of newly designed tacrine derivatives was evaluated against two important AD targets, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). In vitro pharmacological evaluation showed strong ChE inhibitory activity of all compounds, with IC values ranging from 117.
View Article and Find Full Text PDFMonoamine oxidases (MAOs) play a key role in the metabolism of major monoamine neurotransmitters. In particular, the upregulation of MAO-B in Parkinson's disease, Alzheimer's disease and cancer augmented the development of selective MAO-B inhibitors for diagnostic and therapeutic purposes, such as the anti-parkinsonian MAO-B irreversible binder l-deprenyl (Selegiline®). Herein we report on the synthesis of novel fluorinated indanone derivatives for PET imaging of MAO-B in the brain.
View Article and Find Full Text PDFHerein, we report on the synthesis and pharmacological evaluation of ten novel fluorinated cinnamylpiperazines as potential monoamine oxidase B (MAO-B) ligands. The designed derivatives consist of either cinnamyl or 2-fluorocinnamyl moieties connected to 2-fluoropyridylpiperazines. The three-step synthesis starting from commercially available piperazine afforded the final products in overall yields between 9% and 29%.
View Article and Find Full Text PDFBackground: 4-Anilidopiperidine class of synthetic opioid analgesics, with it's representative fentanyl, are by far the most potent and clinically significant for the treatment of the severe chronic and surgical pain. However, side effects of μ-opioids are often quite serious. In order to improve the pharmacological profile of this class of opioid analgesics, a novel fentanyl analogs were designed, synthesized and evaluated in vivo for their antinociceptive activity.
View Article and Find Full Text PDFBackground: Diabetes mellitus type 2 (DMT2) is an endocrine disease of global proportions which is currently affecting 1 in 12 adults in the world, with still increasing prevalence. World Health Organization (WHO) declared this worldwide health problem, as an epidemic disease, to be the only non-infectious disease with such categorization. People with DMT2 are at increased risk of various complications and have shorter life expectancy.
View Article and Find Full Text PDFThe inhibitory activities of selected cyclic urea and carbamate derivatives (1-13) toward α-glucosidase (α-Gls) in in vitro assay were examined in this study. All examined compounds showed higher inhibitory activity (IC) against α-Gls compared to standard antidiabetic drug acarbose. The most potent was benzyl (3,4,5-trimethoxyphenyl)carbamate (12) with IC = 49.
View Article and Find Full Text PDF