Population growth, urbanization, industry, floods, and agriculture globally degrade groundwater in river plains, necessitating action for its quality assessment and management. Hence, a comprehensive methodology, including hydrogeochemical facies (Piper, Gibbs), irrigation indices (SAR, Wilcox), entropy-weighted water quality index (EWQI), positive matrix factorization (PMF), and Monte Carlo simulation of source-specific health risks was used in this study to analyze groundwater in the Morava river plain (Serbia). The results revealed a prevalent Ca-Mg-HCO3 groundwater type, influenced by water-rock interactions.
View Article and Find Full Text PDFThe region of the investigated receptor is situated in the southern part of the Adriatic Sea in the Mediterranean. The measuring station is located on the seashore, which, being considered as a border area, is representative for the qualitative and quantitative estimation of the influence of marine and continental aerosols on the content of major ions in precipitation. In the sampling period, precipitation in the region of the investigated receptor was more abundant during the summer and autumn than during the winter and spring.
View Article and Find Full Text PDF