Publications by authors named "Ivana Crnovcic"

Tiancimycin (TNM) A belongs to the anthraquinone-fused subfamily of enediyne natural products, and selected enediynes have been translated into clinical drugs. Previously, inactivation of in sp. CB03234 resulted in the accumulation of TNM B and TNM E, supporting the functional assignment of TnmL as a cytochrome P450 hydroxylase that catalyzes A-ring modification in TNM A biosynthesis.

View Article and Find Full Text PDF

The enediynes are among the most cytotoxic molecules known, and their use as anticancer drugs has been successfully demonstrated by targeted delivery. Clinical advancement of the anthraquinone-fused enediynes has been hindered by their low titers and lack of functional groups to enable the preparation of antibody-drug conjugates (ADCs). Here we report biochemical and structural characterization of TnmH from the tiancimycin (TNM) biosynthetic pathway, revealing that (i) TnmH catalyzes regiospecific methylation at the C-7 hydroxyl group, (ii) TnmH exhibits broad substrate promiscuity toward hydroxyanthraquinones and S-alkylated SAM analogues and catalyzes efficient installation of reactive alkyl handles, (iii) the X-ray crystal structure of TnmH provides the molecular basis to account for its broad substrate promiscuity, and (iv) TnmH as a biocatalyst enables the development of novel conjugation strategies to prepare antibody-TNM conjugates.

View Article and Find Full Text PDF

Actinomycin peptide synthetase genes constitute two oppositely oriented transcriptional units, acmADR, and acmBC, separated by a non-coding intergenic region. Gene constructs of the intergenic region together with its adjoining gene acmA or acmB from the actinomycin biosynthetic gene cluster of Streptomyces chrysomallus were transferred into Streptomyces lividans TK64. Each construct expressed the respective synthetase indicating divergent promoters.

View Article and Find Full Text PDF

Comparative analyses of the four known anthraquinone-fused enediynes biosynthetic gene clusters identified four genes, tnmE6, tnmH, tnmL, and tnmQ, unique to the tnm gene cluster. Larger scale fermentation of both the S. sp.

View Article and Find Full Text PDF

Tautomycetin (TTN) is a polyketide natural product featuring a terminal alkene. Functional characterization of the genes within the ttn gene cluster from Streptomyces griseochromogenes established the biosynthesis of the TTN polyketide backbone, its dialkylmaleic anhydride moiety, the coupling of the two moieties to form the nascent intermediate TTN F-1, and the tailoring steps converting TTN F-1 to TTN. Here, we report biochemical and structural characterization of TtnD, a prenylated FMN (prFMN)-dependent decarboxylase belonging to the UbiD family that catalyzes the penultimate step of TTN biosynthesis.

View Article and Find Full Text PDF

The enediynes, microbial natural products with extraordinary cytotoxicities, have been translated into clinical drugs. Two self-resistance mechanisms are known in the enediyne producers-apoproteins for the nine-membered enediynes and self-sacrifice proteins for the ten-membered enediyne calicheamicin. Here we show that: (1) tnmS1, tnmS2, and tnmS3 encode tiancimycin (TNM) resistance in its producer Streptomyces sp.

View Article and Find Full Text PDF

The bleomycins (BLMs) are widely used in combination therapies for the treatment of various cancers. Dose-dependent and cumulative pulmonary toxicity is the major cause of BLM-associated morbidity, limiting the broad uses of BLMs as anticancer drugs. The organ specificity of BLM-induced toxicity has been correlated with the expression of the hBLMH gene, encoding the human bleomycin hydrolase (hBLMH), which is poorly expressed in the lung.

View Article and Find Full Text PDF

The potent cytotoxicity and unique mode of action make the enediyne antitumor antibiotic C-1027 an exquisite drug candidate for anticancer chemotherapy. However, clinical development of C-1027 has been hampered by its low titer from the original producer Streptomyces globisporus C-1027. Here we report three new C-1027 alternative producers, Streptomyces sp.

View Article and Find Full Text PDF

Recent biochemical characterizations of the MdpB2 CoA ligase and MdpB1 C-methyltransferase (C-MT) from the maduropeptin (MDP, 2) biosynthetic machinery revealed unusual pathway logic involving C-methylation occurring on a CoA-activated aromatic substrate. Here we confirmed this pathway logic for the biosynthesis of polyketomycin (POK, 3). Biochemical characterization unambiguously established that PokM3 and PokMT1 catalyze the sequential conversion of 6-methylsalicylic acid (6-MSA, 4) to form 3,6-dimethylsalicylyl-CoA (3,6-DMSA-CoA, 6), which serves as the direct precursor for the 3,6-dimethylsalicylic acid (3,6-DMSA) moiety in the biosynthesis of 3.

View Article and Find Full Text PDF

X-type actinomycins (Acms) contain 4-hydroxyproline (Acm X ) or 4-oxoproline (Acm X ) in their β-pentapeptide lactone rings, whereas their α ring contains proline. We demonstrate that these Acms are formed through asymmetric condensation of Acm half molecules (Acm halves) containing proline with 4-hydroxyproline- or 4-oxoproline-containing Acm halves. In turn, we show-using an artificial Acm half analogue (PPL 1) with proline in its peptide chain-their conversion into the 4-hydroxyproline- and 4-oxoproline-containing Acm halves, PPL 0 and PPL 2, in mycelial suspensions of Streptomyces antibioticus.

View Article and Find Full Text PDF

A new anthraquinone-fused enediyne, yangpumicin A (YPM A, 1), along with four Bergman cyclization congeners (YPM B-E, 2-5), was isolated from Micromonospora yangpuensis DSM 45577 after mining enediyne biosynthetic gene clusters from public actinobacterial genome databases and prioritizing the hits by an enediyne genome neighborhood network analysis for discovery. YPM A is potent against a broad spectrum of human cancer cell lines. The discovery of 1 provides new opportunities for the functionalization of enediynes to develop new conjugation chemistries for antibody-drug conjugates.

View Article and Find Full Text PDF

The bleomycins (BLMs), a family of glycopeptide antibiotics, are currently used clinically in combination with a number of other agents for the treatment of malignant tumors. Other members of the BLM family include tallysomycins (TLMs), phleomycins and zorbamycin (ZBM). We previously cloned and characterized the biosynthetic gene clusters for BLMs, TLMs and ZBM.

View Article and Find Full Text PDF

Sequencing the actinomycin () biosynthetic gene cluster of IMRU 3720, which produces actinomycin X (Acm X), revealed 20 genes organized into a highly similar framework as in the bi-armed C biosynthetic gene cluster of but without an attached additional extra arm of orthologues as in the latter. Curiously, the extra arm of the gene cluster turned out to perfectly match the single arm of the gene cluster in the same order of orthologues including the the presence of two pseudogenes, and , encoding a cytochrome P450 and its ferredoxin, respectively. Orthologues of the latter genes were both missing in the principal arm of the C gene cluster.

View Article and Find Full Text PDF

Streptomyces mobaraensis DSM40847 has been identified by genome mining and confirmed to be a new bleomycin (BLM) producer. Manipulation of BLM biosynthesis in S. mobaraensis has been demonstrated, as exemplified by the engineered production of 6'-deoxy-BLM A2, providing a biotechnology platform for BLM biosynthesis and engineering.

View Article and Find Full Text PDF

Unlabelled: The enediyne family of natural products has had a profound impact on modern chemistry, biology, and medicine, and yet only 11 enediynes have been structurally characterized to date. Here we report a genome survey of 3,400 actinomycetes, identifying 81 strains that harbor genes encoding the enediyne polyketide synthase cassettes that could be grouped into 28 distinct clades based on phylogenetic analysis. Genome sequencing of 31 representative strains confirmed that each clade harbors a distinct enediyne biosynthetic gene cluster.

View Article and Find Full Text PDF

Comparative analysis of the enediyne biosynthetic gene clusters revealed sets of conserved genes serving as outstanding candidates for the enediyne core. Here we report the crystal structures of SgcJ and its homologue NCS-Orf16, together with gene inactivation and site-directed mutagenesis studies, to gain insight into enediyne core biosynthesis. Gene inactivation in vivo establishes that SgcJ is required for C-1027 production in Streptomyces globisporus.

View Article and Find Full Text PDF

Conjugation of cancer targeting peptides (CTPs) with small molecular therapeutics has emerged as a promising strategy to deliver potent (but typically nonspecific) cytotoxic agents selectively to cancer cells. Here we report the engineered production of a CTP (NGR)-containing C-1027 and evaluation of its activity against selected cancer cell lines. C-1027 is an enediyne chromoprotein produced by Streptomyces globisporus, consisting of an apo-protein (CagA) and an enediyne chromophore (C-1027).

View Article and Find Full Text PDF

An extensive study of actinomycins was performed using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS). Actinomycins represent a well-known family of peptidolactone chromopeptides with potent cytostatic and antibiotic properties. Using five well-characterized streptomycete strains, we introduced MALDI-TOF MS as an efficient technique for rapid in situ detection of actinomycins in surface extracts of cells picked from agar plates.

View Article and Find Full Text PDF

Streptomyces chrysomallus and Streptomyces parvulus produce novel C-demethylactinomycins besides their normal actinomycins when fed with 3-hydroxyanthranilic acid (3-HA). The 3-HA is incorporated into pentapeptide lactone precursors in competition with the regular precursor 4-methyl-3-hydroxyanthranilic acid (4-MHA). The resultant 3-HA pentapeptide lactones can condense with each other, as well as with the continuously formed 4-MHA pentapeptide lactones giving C-demethylactinomycins lacking one or both methyl groups in their phenoxazinone chromophores.

View Article and Find Full Text PDF

The actinomycin biosynthetic gene cluster of Streptomyces chrysomallus harbors two paralogous genes, acmI and acmL, encoding methyltransferases. To unveil their suspected role in the formation of 3-hydroxy-4-methyl-anthranilic acid (4-MHA), the building block of the actinomycin chromophore, each gene was expressed in Escherichia coli. Testing the resulting ∼40 kDa His(6)-tagged proteins with compounds of biogenetic relevance as substrates and S-adenosyl-l-methionine revealed that each exclusively methylated 3-hydroxykynurenine (3-HK) with formation of 3-hydroxy-4-methylkynurenine (4-MHK) identified by its in vitro conversion to 4-MHA with hydroxykynureninase.

View Article and Find Full Text PDF

A gene cluster was identified which contains genes involved in the biosynthesis of actinomycin encompassing 50 kb of contiguous DNA on the chromosome of Streptomyces chrysomallus. It contains 28 genes with biosynthetic functions and is bordered on both sides by IS elements. Unprecedentedly, the cluster consists of two large inverted repeats of 11 and 13 genes, respectively, with four nonribosomal peptide synthetase genes in the middle.

View Article and Find Full Text PDF