Antimicrobial peptides take a specific position in the field of antibiotics (ATBs), however, from a large number of available molecules only a few of them were approved and are used in clinics. These therapeutic modalities play a crucial role in the management of diseases caused by multidrug-resistant bacterial pathogens and represent the last-line therapy for bacterial infections. Therefore, there is a demand for a rationale use of such ATBs based on optimization of the dosing strategy to minimize the risk of resistance and ensure the sustainable efficacy of the drug in real clinical practice.
View Article and Find Full Text PDFNowadays, lipidomics plays a crucial role in the investigation of novel biomarkers of various diseases. Its implementation into the field of clinical analysis led to the identification of specific lipids and/or significant changes in their plasma levels in patients suffering from cancer, Alzheimer's disease, sepsis, and many other diseases and pathological conditions. Profiling of lipids and determination of their plasma concentrations could also be helpful in the case of drug therapy management, especially in combination with therapeutic drug monitoring (TDM).
View Article and Find Full Text PDFMonitoring plasma concentrations of β-lactam antibiotics is crucial, particularly in critically ill patients, where variations in concentrations can lead to treatment failure or adverse events. Standardized antimicrobial regimens may not be effective for all patients, especially in special groups with altered physiological parameters. Pharmacokinetic/pharmacodynamic (PK/PD) studies highlight the time-dependent antibacterial activity of these antibiotics, emphasizing the need for personalized dosing.
View Article and Find Full Text PDFColistin and other polymyxin antibiotics have become increasingly used in clinical settings as a result of treating multidrug-resistant infections in critically ill patients. The highly variable pharmacokinetics of colistin in these patients is accompanied by a high risk of toxicity or underdosing. An effective tool that allows rational optimization of the drug dosage regimen is therapeutic drug monitoring.
View Article and Find Full Text PDFBackground: Optimization of antimicrobial therapy is a challenge in critically ill patients who develop extreme interindividual and intraindividual pharmacokinetic variability. Therapeutic drug monitoring is a valuable tool for maximizing the effect of a drug and minimizing its adverse and unwanted effects. The aim of the current work was to develop and validate an ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method to determine multiple antibiotics in clinical plasma samples from critically ill patients; low sample volume and rapid processing of samples were considered the main criteria.
View Article and Find Full Text PDFThe aim of the present study is the development and validation of a simple method based on capillary zone electrophoresis coupled with UV detection for simultaneous determination of tramadol and paracetamol in pharmaceutical and biological samples. The background electrolyte was composed of 50 mM ammonium carbonate, which is a type of a non-conventional electrolyte system. The developed method was characterized by suitable validation parameters, such as linearity (coefficient of determination r2 0,995), selectivity or the limit of detection at the level of 0.
View Article and Find Full Text PDFAmino acids are crucial building blocks of living organisms. Together with their derivatives, they participate in many intracellular processes to act as hormones, neuromodulators, and neurotransmitters. For several decades amino acids have been studied for their potential as markers of various diseases, including inflammatory bowel diseases.
View Article and Find Full Text PDFA capillary electrophoresis-tandem mass spectrometry method with a multisegment injection and an in-capillary field-enhanced sample stacking for determination of therapeutic peptide triptorelin in pharmaceutical and biological matrices was developed. The CE separation conditions were optimized in order to obtain maximal separation efficiency, analytical signal intensity and stability, and minimal adsorption of the analyzed peptide onto the capillary wall (1 M formic acid-HFo, pH 1.88).
View Article and Find Full Text PDFThe possibility to investigate analytes at ultra-low concentration levels still remains a hot topic in bioanalysis. In this area, various preconcentration techniques are an integral part of analytical procedures. When applying electromigration separation techniques, an isotachophoresis has been advantageously employed many times for this purpose.
View Article and Find Full Text PDFIn the presented study, a capillary electrophoresis-mass spectrometry method combining high separation efficiency and sensitive detection has been developed and validated, for the first time, to quantify branched chain amino acids (valine, isoleucine, leucine) in commercial food and sport supplement samples and human plasma samples. The separations were performed in a bare fused silica capillary. The background electrolyte was composed of 500 mM formic acid with pH 2.
View Article and Find Full Text PDFA two-dimensional capillary isotachophoresis-capillary zone electrophoresis method hyphenated with tandem mass spectrometry was developed and validated for ultrasensitive quantification of serotonin in real human urine samples. Under optimal conditions, the separation was achieved within 12 min (including on-line sample preparation) with the limit of detection of 34 pg mL (due to a large volume sample injection, here 10 µL, and isotachophoretic preconcentration). This concentration limit represents the lowest value for serotonin in comparison to other previously published separation methods employing mass spectrometry detection and applied to urine matrices.
View Article and Find Full Text PDFThe paper is focused on development of a simple analytical method based on capillary zone electro-phoresis in combination with UV-detection for simul-taneous detemination of thiamine and pyridoxine in pharmaceutical and food samples. The separation of thiamine and pyridoxine was performed in a background electrolyte composed of 25 mmol l-1 GABA + 50 mmol l-1 HAc+ 0.05% m-HEC.
View Article and Find Full Text PDF