Unlike previous lignin biodegradation studies, white rot fungi were used to produce functional biopolymers from Kraft lignin. Lignin-based polymers (hydrogel precursors) partially soluble in both aqueous and organic solvents were produced employing a relatively fast (6 days) enzymation of Kraft lignin with basidiomycetes, primarily Coriolus versicolor, pre-grown on kenaf/lignin agar followed by either vacuum evaporation or acid precipitation. After drying followed by a treatment with alkaline water, this intermediate polymer became a pH-sensitive anionic hydrogel insoluble in either aqueous or organic solvents.
View Article and Find Full Text PDFIndulin AT biodegradation by basidiomycetous fungi, actinobacteria and commercial laccases was evaluated using a suite of chemical analysis methods. The extent of microbial degradation was confirmed by novel thermal carbon analysis (TCA), as the treatments altered the carbon desorption and pyrolysis temperature profiles in supernatants. Laccase treatments caused only minor changes, though with increases occurring in the 850°C and char precursor fractions.
View Article and Find Full Text PDFThe efficiency and dynamics of simultaneous kenaf biomass decomposition by basidiomycetous fungi and actinobacteria were investigated. After 8weeks of incubation, up to 34wt.% of the kenaf biomass was degraded, with the combination of fungi and bacteria being the most efficient.
View Article and Find Full Text PDFExcess "free" iron which occurs under certain physiological conditions participates in the formation of toxic reactive oxygen species via the "fenton" chemistry. The reactive oxygen species oxidize biomolecules and have been implicated in many oxidative stress-related diseases. However, the ideal therapy for treating iron overload problems in humans has not yet been developed.
View Article and Find Full Text PDF