Bull Math Biol
October 2024
Cancers are typically fueled by sequential accumulation of driver mutations in a previously healthy cell. Some of these mutations, such as inactivation of the first copy of a tumor suppressor gene, can be neutral, and some, like those resulting in activation of oncogenes, may provide cells with a selective growth advantage. We study a multi-type branching process that starts with healthy tissue in homeostasis and models accumulation of neutral and advantageous mutations on the way to cancer.
View Article and Find Full Text PDFThe success of chimeric antigen receptor (CAR) T-cell therapy in treating hematologic malignancies has generated widespread interest in translating this technology to solid cancers. However, issues like tumor infiltration, the immunosuppressive tumor microenvironment, and tumor heterogeneity limit its efficacy in the solid tumor setting. Recent experimental and clinical studies propose local administration directly into the tumor or at the tumor site to increase CAR T-cell infiltration and improve treatment outcomes.
View Article and Find Full Text PDFThe questions of how healthy colonic crypts maintain their size, and how homeostasis is disrupted by driver mutations, are central to understanding colorectal tumorigenesis. We propose a three-type stochastic branching process, which accounts for stem, transit-amplifying (TA) and fully differentiated (FD) cells, to model the dynamics of cell populations residing in colonic crypts. Our model is simple in its formulation, allowing us to estimate all but one of the model parameters from the literature.
View Article and Find Full Text PDFOne of the important developmental tasks in adolescence and emerging adulthood is the questioning of identity issues, with body image being a prominent concern. In the age of modern technology, many processes of social comparison take place on social media, which serve as an ideal platform for comparison with others. The aim of this study was to examine the effects of identity dimensions, social media use, and social media social comparison, on different domains of body image satisfaction (i.
View Article and Find Full Text PDFTheor Popul Biol
June 2023
We study a multi-stage model for the development of colorectal cancer from initially healthy tissue. The model incorporates a complex sequence of driver gene alterations, some of which result in immediate growth advantage, while others have initially neutral effects. We derive analytic estimates for the sizes of premalignant subpopulations, and use these results to compute the waiting times to premalignant and malignant genotypes.
View Article and Find Full Text PDFTumors consist of different genotypically distinct subpopulations-or subclones-of cells. These subclones can influence neighboring clones in a process called "clonal interaction." Conventionally, research on driver mutations in cancer has focused on their cell-autonomous effects that lead to an increase in fitness of the cells containing the driver.
View Article and Find Full Text PDFUnlabelled: Transformation to aggressive disease histologies generates formidable clinical challenges across cancers, but biological insights remain few. We modeled the genetic heterogeneity of chronic lymphocytic leukemia (CLL) through multiplexed in vivo CRISPR-Cas9 B-cell editing of recurrent CLL loss-of-function drivers in mice and recapitulated the process of transformation from indolent CLL into large cell lymphoma [i.e.
View Article and Find Full Text PDFPLoS Comput Biol
November 2022
As a cancer develops, its cells accrue new mutations, resulting in a heterogeneous, complex genomic profile. We make use of this heterogeneity to derive simple, analytic estimates of parameters driving carcinogenesis and reconstruct the timeline of selective events following initiation of an individual cancer, where two longitudinal samples are available for sequencing. Using stochastic computer simulations of cancer growth, we show that we can accurately estimate mutation rate, time before and after a driver event occurred, and growth rates of both initiated cancer cells and subsequently appearing subclones.
View Article and Find Full Text PDFBackground: A vestibular schwannoma (VS) is a relatively rare, benign tumour of the eighth cranial nerve, often involving alterations to the gene NF2. Previous mathematical models of schwannoma incidence have not attempted to account for alterations in specific genes, and could not distinguish between nonsense mutations and loss of heterozygosity (LOH).
Methods: Here, we present a mechanistic approach to modelling initiation and malignant transformation in schwannoma.
To increase our basic understanding of the ecology and evolution of conjugative plasmids, we need reliable estimates of their rate of transfer between bacterial cells. Current assays to measure transfer rate are based on deterministic modeling frameworks. However, some cell numbers in these assays can be very small, making estimates that rely on these numbers prone to noise.
View Article and Find Full Text PDFMeasuring the selective fitness advantages provided by driver mutations has the potential to facilitate a precise quantitative understanding of cancer evolution. However, accurately measuring the selective advantage of driver mutations has remained a challenge in the field. Early studies reported small selective advantages of drivers, on the order of 1%, whereas newer studies report much larger selective advantages, as high as 1,200%.
View Article and Find Full Text PDFBackground: Childhood maltreatment (CM) and exposure to community violence (ETV) are correlated with physical/mental health and psychosocial problems. Typically, CM and ETV are examined separately, by subtypes within category, or collapsed across both into one category of adversity. Consequently, research is limited in identifying subgroups of individuals with different amounts of exposure to both CM and ETV.
View Article and Find Full Text PDFThe Federal Drug Administration approved the first Chimeric Antigen Receptor T-cell (CAR T-cell) therapies for the treatment of several blood cancers in 2017, and efforts are underway to broaden CAR T technology to address other cancer types. Standard treatment protocols incorporate a preconditioning regimen of lymphodepleting chemotherapy prior to CAR T-cell infusion. However, the connection between preconditioning regimens and patient outcomes is still not fully understood.
View Article and Find Full Text PDFQuantifying evolutionary dynamics of cancer initiation and progression can provide insights into more effective strategies of early detection and treatment. Here we develop a mathematical model of colorectal cancer initiation through inactivation of two tumor suppressor genes and activation of one oncogene, accounting for the well-known path to colorectal cancer through loss of tumor suppressors and and gain of the oncogene. In the model, we allow mutations to occur in any order, leading to a complex network of premalignant mutational genotypes on the way to colorectal cancer.
View Article and Find Full Text PDFUncovering and quantifying the laws of the evolutionary dynamics of cancer, in particular in the context of specific genetic lesions and in individual patients, has the potential to revolutionize precision oncology. Recent technological advances in the study of human cancer have increased access to in vivo human data and have thereby facilitated the confirmation or refutation of existing theoretical models. In this Perspective, we discuss recent work at the intersection of quantitative mathematical models of cancer evolution and patient data that provides insights into different stages of tumor evolution, including premalignant and malignant progression and response to therapy.
View Article and Find Full Text PDFPLoS Comput Biol
September 2019
Recently available cancer sequencing data have revealed a complex view of the cancer genome containing a multitude of mutations, including drivers responsible for cancer progression and neutral passengers. Measuring selection in cancer and distinguishing drivers from passengers have important implications for development of novel treatment strategies. It has recently been argued that a third of cancers are evolving neutrally, as their mutational frequency spectrum follows a 1/f power law expected from neutral evolution in a particular intermediate frequency range.
View Article and Find Full Text PDFHow the genomic features of a patient's cancer relate to individual disease kinetics remains poorly understood. Here we used the indolent growth dynamics of chronic lymphocytic leukaemia (CLL) to analyse the growth rates and corresponding genomic patterns of leukaemia cells from 107 patients with CLL, spanning decades-long disease courses. We found that CLL commonly demonstrates not only exponential expansion but also logistic growth, which is sigmoidal and reaches a certain steady-state level.
View Article and Find Full Text PDFDespite increased focus on the clinical relevance of dormant metastatic disease, our understanding of dormant niches, mechanisms underlying emergence from dormancy, and the immune system's role in this phenomenon, remains in its infancy. Here, we discuss key work that has shaped our current understanding of these topics. Because tumour dormancy provides a unique therapeutic window to prevent metastatic disease, we discuss on-going clinical trials and weigh the potential for immunotherapy to eradicate dormant disease.
View Article and Find Full Text PDFBackground: Drug-induced Liver Injury (DILI) is an important cause of acute liver failure cases in the United States, and remains a common cause of withdrawal of drugs in both preclinical and clinical phases.
Methods: A structured search of bibliographic databases - Web of Science Core Collection, Scopus and Medline for peer-reviewed articles on models of DILI was performed. The reference lists of relevant studies was prepared and a citation search for the included studies was carried out.
Treatment of chronic lymphocytic leukemia (CLL) has shifted from chemo-immunotherapy to targeted agents. To define the evolutionary dynamics induced by targeted therapy in CLL, we perform serial exome and transcriptome sequencing for 61 ibrutinib-treated CLLs. Here, we report clonal shifts (change >0.
View Article and Find Full Text PDFReconstructing the evolutionary history of metastases is critical for understanding their basic biological principles and has profound clinical implications. Genome-wide sequencing data has enabled modern phylogenomic methods to accurately dissect subclones and their phylogenies from noisy and impure bulk tumour samples at unprecedented depth. However, existing methods are not designed to infer metastatic seeding patterns.
View Article and Find Full Text PDFThe extent of heterogeneity among driver gene mutations present in naturally occurring metastases-that is, treatment-naive metastatic disease-is largely unknown. To address this issue, we carried out 60× whole-genome sequencing of 26 metastases from four patients with pancreatic cancer. We found that identical mutations in known driver genes were present in every metastatic lesion for each patient studied.
View Article and Find Full Text PDFBackground: Interstitial brachytherapy for localised prostate cancer may be followed by transient increases in prostate-specific antigen (PSA) that resolve without therapy. Such PSA bounces may be associated with an improved outcome but often cause alarm in the patient and physician, and have defied explanation.
Methods: We developed a mathematical model to capture the interactions between the tumour, radiation and anti-tumour immune response.