Structural transformations occurring in proteinaceous viral shells (capsids) can be induced by changing the pH of bathing solution, thus modifying the dissociation equilibrium of ionizable amino acids in proteins. To analyze the effects of electrostatic interactions on viral capsids, we construct a model of 2D isotropic elastic shells with embedded point charges located in the centers of mass of individual proteins. We find that modification of the electrostatic interactions between proteins affects not only the size and shape of capsids, but in addition induces substantial deformations of hexamers in capsid structures.
View Article and Find Full Text PDFUnderstanding the principles governing protein arrangement in viral capsids and structurally similar protein shells can enable the development of new antiviral strategies and the design of artificial protein cages for various applications. We study these principles within the context of the close packing problem, by analyzing dozens of small spherical shells assembled from a single type of protein. First, we use icosahedral spherical close packings containing 60 identical disks, where ≤ 4, to rationalize the protein arrangement in twenty real icosahedral shells both satisfying and violating the paradigmatic Caspar-Klug model.
View Article and Find Full Text PDFUnlike in other viruses, in Cypoviruses the genome is doubly protected since their icosahedral capsids are embedded into a perfect polyhedrin crystal. Current experimental methods cannot resolve the resulting interface structure and we propose a symmetry-based approach to predict it. We reveal a remarkable match between the surfaces of Cypovirus and the outer polyhedrin matrix.
View Article and Find Full Text PDFUsing recent Zika virus structural data we reveal a hidden symmetry of protein order in immature and mature flavivirus shells, violating the Caspar-Klug paradigmatic model of capsid structures. We show that proteins of the outer immature shell layer exhibit trihexagonal tiling, while proteins from inner and outer layers conjointly form a double-shelled close-packed structure, based on a common triangular spherical lattice. Within the proposed structural model, we furthermore rationalize the structural organization of misassembled non-infectious subviral particles that have no inner capsid.
View Article and Find Full Text PDFUnderstanding the principles of protein packing and the mechanisms driving morphological transformations in virus shells (capsids) during their maturation can be pivotal for the development of new antiviral strategies. Here, we study how these principles and mechanisms manifest themselves in icosahedral viral capsids assembled from identical symmetric structural units (capsomeres). To rationalize such shells, we model capsomers as symmetrical groups of identical particles interacting with a short-range potential typical of the classic Tammes problem.
View Article and Find Full Text PDF