Vibrio cholerae cytolysin (VCC) is a pore-forming toxin that is secreted in precursor form (pro-VCC) and requires proteolytic cleavage in order to attain membrane-permeabilizing properties. Pro-VCC can be activated both in solution and membrane-bound state. Processing of membrane-bound pro-VCC can in turn be achieved through the action of both cell-associated and soluble proteases.
View Article and Find Full Text PDFProduction of a single cysteine substitution mutant, S177C, allowed Escherichia coli hemolysin (HlyA) to be radioactively labeled with tritiated N-ethylmaleimide without affecting biological activity. It thus became possible to study the binding characteristics of HlyA as well as of toxin mutants in which one or both acylation sites were deleted. All toxins bound to erythrocytes and granulocytes in a nonsaturable manner.
View Article and Find Full Text PDFMany strains of Vibrio cholerae produce a cytolysin (VCC) that forms oligomeric transmembrane pores in animal cells. The molecule is secreted as a procytolysin (pro-VCC) of 79 kDa that must be cleaved at the N terminus to generate the active 65-kDa toxin. Processing can occur in solution, and previous studies have described the action of mature VCC thus generated.
View Article and Find Full Text PDFInvestigations of lipid-mediated signalling pathways are often limited by a lack of methods for the intracellular delivery of lipid messengers. We established a procedure for the transient permeabilization of astrocytes by an oxygen-insensitive mutant of streptolysin-O (SLO) to investigate the participation of the phospholipase D (PLD) signalling pathway in astroglial cell proliferation. Exogenous PLD, when incubated in the presence of SLO, caused an increase in DNA synthesis (measured by thymidine incorporation) which was completely suppressed by ethanol (0.
View Article and Find Full Text PDFInduction of expression and proteolytic breakdown of phospholipase D (PLD) isoforms in primary astrocyte cultures have been investigated. Astrocytes express both PLD1 and 2 and are dependent on PLD activity for cell proliferation [K. Kötter, J.
View Article and Find Full Text PDF