Publications by authors named "Ivan Volkov"

The bacterial chaperone Trigger factor (TF) binds to ribosome-nascent chain complexes (RNCs) and cotranslationally aids the folding of proteins in bacteria. Decades of studies have given a broad, but often conflicting, description of the substrate specificity of TF, its RNC-binding dynamics, and competition with other RNC-binding factors, such as the Signal Recognition Particle (SRP). Previous RNC-binding kinetics experiments were commonly conducted on stalled RNCs in reconstituted systems, and consequently, may not be representative of the interaction of TF with ribosomes translating mRNA in the cytoplasm of the cell.

View Article and Find Full Text PDF

Germanium-tin nanoparticles are promising materials for near- and mid-infrared photonics thanks to their tunable optical properties and compatibility with silicon technology. This work proposes modifying the spark discharge method to produce Ge/Sn aerosol nanoparticles during the simultaneous erosion of germanium and tin electrodes. Since tin and germanium have a significant difference in the potential for electrical erosion, an electrical circuit damped for one period was developed to ensure the synthesis of Ge/Sn nanoparticles consisting of independent germanium and tin crystals of different sizes, with the ratio of the atomic fraction of tin to germanium varying from 0.

View Article and Find Full Text PDF

The hydrothermal synthesis of nickel oxide in the presence of triethanolamine was studied. Furthermore, the relationship between the synthesis conditions, thermal behavior, crystal structure features, phase composition and microstructure of semi-products, and the target oxide nanopowders was established. The thermal behavior of the semi-products was studied using a simultaneous thermal analysis (in particular, using one that involved thermogravimetric analysis and differential scanning calorimetry, TGA/DSC).

View Article and Find Full Text PDF

The atmospheric pressure solvothermal (APS) synthesis of nanocrystalline SnO (average size of coherent scattering regions (CSR)-7.5 ± 0.6 nm) using tin acetylacetonate as a precursor was studied.

View Article and Find Full Text PDF

Mechanistic details of the signal recognition particle (SRP)-mediated insertion of membrane proteins have been described from decades of in vitro biochemical studies. However, the dynamics of the pathway inside the living cell remain obscure. By combining in vivo single-molecule tracking with numerical modeling and simulated microscopy, we have constructed a quantitative reaction-diffusion model of the SRP cycle.

View Article and Find Full Text PDF
Article Synopsis
  • Ribosome-mediated mRNA translation is essential for life, but much of our understanding comes from artificial systems rather than living cells.
  • A new live-cell ribosome-labeling method has been developed that uses single-molecule tracking to analyze how ribosomes find and translate mRNA in real time.
  • The study reveals that over 90% of ribosomal subunits in bacteria are actively engaged in translation, indicates minimal re-initiation on poly-cistronic mRNAs, and suggests significant 70S re-initiation of translation, along with findings that altered ribosomes can still bind to natural mRNAs.
View Article and Find Full Text PDF

In this article, a facile, one-step method for the formation of silver thin-film nanostructures on the surface of AlO substrates using the hydrothermal method is proposed. The dependence of the SERS effect intensity of the formed films during the detection of methylene blue (MB) low concentrations on the synthesis conditions, additional temperature treatment, and laser radiation wavelength (532 and 780 nm) in comparison with similar dye films on commercial SERS substrates is shown. The detection limit of the analyte used for the indicated lasers is estimated.

View Article and Find Full Text PDF

The spread of antibiotic resistance is turning many of the currently used antibiotics less effective against common infections. To address this public health challenge, it is critical to enhance our understanding of the mechanisms of action of these compounds. Aminoglycoside drugs bind the bacterial ribosome, and decades of results from in vitro biochemical and structural approaches suggest that these drugs disrupt protein synthesis by inhibiting the ribosome's translocation on the messenger RNA, as well as by inducing miscoding errors.

View Article and Find Full Text PDF

The emergence of drug-resistant strains of pathogenic microorganisms necessitates the creation of new drugs. In order to find new compounds that effectively inhibit the growth of pathogenic bacteria and fungi, we synthesized a set of N-derivatives of cytidine, 2'-deoxycytidine and 5-metyl-2'-deoxycytidine bearing extended N-alkyl and N-phenylalkyl groups. The derivatives demonstrate activity against a number of Gram-positive bacteria, including Mycobacterium smegmatis (MIC = 24-200 μM) and Staphylococcus aureus (MIC = 50-200 μM), comparable with the activities of some antibiotics in medical use.

View Article and Find Full Text PDF

The formation process for planar solid electrolytes in the CeO-YO system has been studied using efficient, high-performance, high-resolution microplotter printing technology, using functional ink based on nanopowders (the average size of crystallites was 12-15 nm) of a similar composition obtained by programmed coprecipitation of metal hydroxides. The dependence of the microstructure of the oxide nanoparticles obtained and their crystal structure on yttrium concentration has been studied using a wide range of methods. According to X-ray diffraction (XRD), the nanopowders and coatings produced are single-phase, with a cubic crystal structure of the fluorite type, and the electronic state and content of cerium and yttrium in the printed coatings have been determined using X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

Information about the surrounding atmosphere at a real timescale significantly relies on available gas sensors to be efficiently combined into multisensor arrays as electronic olfaction units. However, the array's performance is challenged by the ability to provide orthogonal responses from the employed sensors at a reasonable cost. This issue becomes more demanded when the arrays are designed under an on-chip paradigm to meet a number of emerging calls either in the internet-of-things industry or in situ noninvasive diagnostics of human breath, to name a few, for small-sized low-powered detectors.

View Article and Find Full Text PDF

In this study, we investigated biodeterioration of materials used in tempera painting by analyzing the structure of the microbiome in ancient tempera paintings exhibited in State Tretyakov Gallery, Moscow, Russia. Samples were obtained from 16th-century paintings, including a grand Russian Orthodox icon "The Church Militant" (all exhibits were without visible signs of biodeterioration), and from surrounding walls and ceilings (with vast zones of visible microbial growth). A number of microorganisms isolated from visible signs of environmental bio-damage were also detected in tempera paintings kept in temperature- and humidity-controlled conditions unfavorable for the growth of microflora.

View Article and Find Full Text PDF

In this work, we studied the formation of conductive silver lines with high aspect ratios ( = thickness/width) > 0.1 using the modernized method of aerosol jet printing on a heated silicon substrate. The geometric () and electrical (resistivity) parameters of the formed lines were investigated depending on the number of printing layers (1-10 layers) and the temperature of the substrate (25-300 °C).

View Article and Find Full Text PDF

In the version of this article originally published, the values on the y axis of Fig. 6d were incorrect. They should be 0.

View Article and Find Full Text PDF

Chloramphenicol is a broad-spectrum antibiotic targeting the protein synthesis machinery by binding to the bacterial ribosome. Chloramphenicol has been considered a classic general inhibitor of translation, blocking the accommodation of aa-tRNA into the A site of the large ribosomal subunit. However, recent studies suggest that this proposed mechanism is a simplification and that the effect of chloramphenicol on mRNA translation is much more dynamic.

View Article and Find Full Text PDF

Decades of traditional biochemistry, structural approaches, and, more recently, single-molecule-based in vitro techniques have provided us with an astonishingly detailed understanding of the molecular mechanism of ribosome-catalyzed protein synthesis. However, in order to understand these details in the context of cell physiology and population biology, new techniques to probe the dynamics of molecular processes inside the cell are needed. Recent years' development in super-resolved fluorescence microscopy has revolutionized imaging of intracellular processes, and we now have the possibility to directly peek into the microcosm of biomolecules in their native environment.

View Article and Find Full Text PDF

The application of gas sensors in breath analysis is an important trend in the early diagnostics of different diseases including lung cancer, ulcers, and enteric infection. However, traditional methods of synthesis of metal oxide gas-sensing materials for semiconductor sensors based on wet sol-gel processes give relatively high sensitivity of the gas sensor to changing humidity. The sol-gel process leading to the formation of superficial hydroxyl groups on oxide particles is responsible for the strong response of the sensing material to this factor.

View Article and Find Full Text PDF

Our ability to directly relate results from test-tube biochemical experiments to the kinetics in living cells is very limited. Here we present experimental and analytical tools to directly study the kinetics of fast biochemical reactions in live cells. Dye-labeled molecules are electroporated into bacterial cells and tracked using super-resolved single-molecule microscopy.

View Article and Find Full Text PDF

The ordered structure of UV chromophores in DNA resembles photosynthetic light-harvesting complexes in which quantum coherence effects play a major role in highly efficient directional energy transfer. The possible role of coherent excitons in energy transport in DNA remains debated. Meanwhile, energy transport properties are greatly important for understanding the mechanisms of photochemical reactions in cellular DNA and for DNA-based artificial nanostructures.

View Article and Find Full Text PDF

A method for determining the critical values of the flow speed and the flow constriction degree characteristic of the alignment of cylindrical nano-objects in a flowing suspension is proposed. Previously, the alignment process of cylindrical nano-objects in suspensions was investigated by using birefringence of the polarized light and the small-angle X-ray scattering. While both methods are suitable for measuring the alignment degree of cylindrical nano-objects in suspensions diluted down to low concentrations, they are restricted for the application to undiluted concentrated suspensions because of non-transparency and multiple scattering of X-rays.

View Article and Find Full Text PDF

The rapidly developing field of bionanotechnology requires detailed knowledge of the mechanisms of interaction between inorganic matter and biomolecules. Under conditions different from those in an aqueous solution, however, the chemistry of these systems is elusive and may differ dramatically from their interactions in vitro and in vivo. Here, we report for the first time a photoemission study of a metal silver-DNA interface, formed in vacuo, in comparison with DNA-Ag and fluorescent DNA-Ag complexes formed in solution.

View Article and Find Full Text PDF

We study the formation and fluorescent properties of silver nanoclusters encapsulated in condensed DNA nanoparticles. Fluorescent globular DNA nanoparticles are formed using a dsDNA-cluster complex and polyallylamine as condensing agents. The fluorescence emission spectrum of single DNA nanoparticles is obtained using tip-enhanced fluorescence microscopy.

View Article and Find Full Text PDF

Misfolding and subsequent aggregation of alpha-synuclein (α-Syn) protein are critically involved in the development of several neurodegenerative diseases, including Parkinson's disease (PD). Three familial single point mutations, A30P, E46K, and A53T, correlate with early onset PD; however, the molecular mechanism of the effects of these mutations on the structural properties of α-Syn and its propensity to misfold remains unclear. Here, we address this issue utilizing a single molecule AFM force spectroscopy approach in which structural details of dimers formed by all four variants of α-Syn are characterized.

View Article and Find Full Text PDF