Publications by authors named "Ivan V Iorsh"

Integration of 2D semiconductors with photonic crystal slabs provides an attractive approach to achieving strong light-matter coupling and exciton-polariton formation in a chip-compatible geometry. However, for the development of practical devices, it is crucial that polariton excitations are easily tunable and exhibit a strong nonlinear response. Here we study neutral and charged exciton-polaritons in an electrostatically gated photonic crystal slab with an embedded monolayer semiconductor MoSe and experimentally demonstrate a novel approach to optical control based on polariton nonlinearity.

View Article and Find Full Text PDF

Local deformation of atomically thin van der Waals materials provides a powerful approach to create site-controlled chip-compatible single-photon emitters (SPEs). However, the microscopic mechanisms underlying the formation of such strain-induced SPEs are still not fully clear, which hinders further efforts in their deterministic integration with nanophotonic structures for developing practical on-chip sources of quantum light. Here we investigate SPEs with single-photon purity up to 98% created in monolayer WSe via nanoindentation.

View Article and Find Full Text PDF

Guided 2D exciton-polaritons, resulting from the strong coupling of excitons in semiconductors with nonradiating waveguide modes, provide an attractive approach toward developing novel on-chip optical devices. These quasiparticles are characterized by long propagation distances and efficient nonlinear interactions but cannot be directly accessed from the free space. Here we demonstrate a powerful approach for probing and manipulating guided polaritons in a TaO slab integrated with a WS monolayer using evanescent coupling through a high-index solid immersion lens.

View Article and Find Full Text PDF

Exciton-polaritons offer a versatile platform for realization of all-optical integrated logic gates due to the strong effective optical nonlinearity resulting from the exciton-exciton interactions. In most of the current excitonic materials there exists a direct connection between the exciton robustness to thermal fluctuations and the strength of the exciton-exciton interaction, making materials with the highest levels of exciton nonlinearity applicable at cryogenic temperatures only. Here, we show that strong polaronic effects, characteristic for perovskite materials, allow overcoming this limitation.

View Article and Find Full Text PDF

The emergence of Hofstadter butterflies for bosons in synthetic-gauge-field antiferromagnetic (AFM) patterns is theoretically studied. We report on a specific tight-binding model of artificial AFM structures incorporating both nearest and next-to-nearest neighbour tunnelings and allowing for the formation of the fractal spectra even with the vanishing gauge field flux through the lattice. The model is applied to square and honeycomb lattices.

View Article and Find Full Text PDF

Optical bound states in the continuum (BICs) provide a way to engineer very narrow resonances in photonic crystals. The extended interaction time in these systems is particularly promising for the enhancement of nonlinear optical processes and the development of the next generation of active optical devices. However, the achievable interaction strength is limited by the purely photonic character of optical BICs.

View Article and Find Full Text PDF

Metasurfaces offer great potential to control near- and far-fields through engineering optical properties of elementary cells or meta-atoms. Such perspective opens a route to efficient manipulation of the optical signals both at nanoscale and in photonics applications. In this paper we show that a local surface conductivity tensor well describes optical properties of a resonant plasmonic hyperbolic metasurface both in the far-field and in the near-field regimes, where spatial dispersion usually plays a crucial role.

View Article and Find Full Text PDF

We develop a general theoretical framework of integrated paired photon-plasmon generation through spontaneous wave mixing in nonlinear plasmonic and metamaterial nanostructures, rigorously accounting for material dispersion and losses in the quantum regime through the electromagnetic Green function. We identify photon-plasmon correlations in layered metal-dielectric structures with 70% internal heralding quantum efficiency and reveal a novel mechanism of broadband generation enhancement due to topological transition in hyperbolic metamaterials.

View Article and Find Full Text PDF

We study the scattering of polaritons by free electrons in hyperbolic photonic media and demonstrate that the unconventional dispersion and high local density of states of electromagnetic modes in composite media with hyperbolic dispersion can lead to a giant Compton-like shift and dramatic enhancement of the scattering cross section. We develop a universal approach to study multiphoton processes in nanostructured media and derive the intensity spectrum of the scattered radiation for realistic metamaterial structures.

View Article and Find Full Text PDF