Neural transplantation is a promising modality for treatment of neurodegenerative diseases, traumatic brain injury and stroke. Biocompatible scaffolds with optimized properties improve the survival of transplanted neural cells and differentiation of progenitor cells into the desired types of neurons. Silk fibroin is a biocompatible material for tissue engineering.
View Article and Find Full Text PDFSilk fibroin is a promising biomaterial for tissue engineering due to its valuable mechanical and biological properties. However, being a natural product and a protein, it lacks the processability and uniform quality of an advanced synthetic material. Here we propose a way to overcome this contradiction using novel fibroin photocrosslinkable derivative (FBMA).
View Article and Find Full Text PDFNovel quaternized polyethyleneimine and cross-linked polyethyleneimine derivatives have been synthesized using both traditional and microwave-assisted techniques to create antimicrobial coatings, with octyl, dodecyl, or hexadecyl bromides as alkylating agent and various bifunctional electrophiles as cross-linkers. Quaternization has been performed using methyl iodide or dimethyl sulfate; it has been shown that methyl iodide has no advantages over dimethyl sulfate. Antimicrobial activity of the polymers against Gram-positive (S.
View Article and Find Full Text PDF