Publications by authors named "Ivan Tarassov"

Article Synopsis
  • Transfer RNA (tRNA) dynamics play a significant role in cancer by influencing how messenger RNA (mRNA) translates into proteins, specifically through aminoacyl-tRNA synthetases that can either encourage or inhibit tumor growth.
  • Research indicates that valine aminoacyl-tRNA synthetase (VARS) is crucial for the changes in protein translation related to resistance against MAPK therapy in melanoma patients, as there is an increased use of valine in their proteomes.
  • Additionally, reducing VARS levels can make MAPK-resistant melanoma cells more sensitive to treatment, as VARS is linked to the translation of key mRNAs that support cell survival via fatty acid oxidation.
View Article and Find Full Text PDF

Mitochondrial gene editing holds great promise as a therapeutic approach for mitochondrial diseases caused by mutations in the mitochondrial DNA (mtDNA). Current strategies focus on reducing mutant mtDNA heteroplasmy levels through targeted cleavage or base editing. However, the delivery of editing components into mitochondria remains a challenge.

View Article and Find Full Text PDF

Proper RNA localisation is essential for physiological gene expression. Various kinds of genome-wide approaches permit to comprehensively profile subcellular transcriptomes. Among them, cell fractionation methods, that couple RNase treatment of isolated organelles to the sequencing of protected transcripts, remain most widely used, mainly because they do not require genetic modification of the studied system and can be easily implemented in any cells or tissues, including in non-model species.

View Article and Find Full Text PDF

CRISPR RNAs (crRNAs) that direct target DNA cleavage by Type V Cas12a nucleases consist of constant repeat-derived 5'-scaffold moiety and variable 3'-spacer moieties. Here, we demonstrate that removal of most of the 20-nucleotide scaffold has only a slight effect on in vitro target DNA cleavage by a Cas12a ortholog from Acidaminococcus sp. (AsCas12a).

View Article and Find Full Text PDF

Mitochondria have complex ultrastructure which includes continuous subcompartments, such as matrix, intermembrane space, and two membranes, as well as focal structures, such as nucleoids, RNA granules, and mitoribosomes. Comprehensive studies of the spatial distribution of proteins and RNAs inside the mitochondria are necessary to understand organellar gene expression processes and macromolecule targeting pathways. Here we give examples of distribution analysis of mitochondrial proteins and transcripts by conventional microscopy and the super-resolution technique 3D STORM.

View Article and Find Full Text PDF

Defects in human mitochondrial genome can cause a wide range of clinical disorders that still do not have efficient therapies. The natural pathway of small noncoding RNA import can be exploited to address therapeutic RNAs into the mitochondria. To create an approach of carrier-free targeting of RNA into living human cells, we designed conjugates containing a cholesterol residue and developed the protocols of chemical synthesis of oligoribonucleotides conjugated with cholesterol residue through cleavable pH-triggered hydrazone bond.

View Article and Find Full Text PDF

Panton-Valentine Leukocidin (PVL) is a bicomponent leukotoxin produced by 3%-10% of clinical Staphylococcus aureus (SA) strains involved in the severity of hospital and community-acquired infections. Although PVL was long known as a pore-forming toxin, recent studies have challenged the formation of a pore at the plasma membrane, while its endocytosis and the exact mode of action remain to be defined. In vitro immunolabeling of human neutrophils shows that Neutrophil Extracellular Traps (NETosis) is triggered by the action of purified PVL, but not by Gamma hemolysin CB (HlgCB), a structurally similar SA leukotoxin.

View Article and Find Full Text PDF

Objective: To demonstrate the causal role in disease of the m.15992A>T mutation observed in patients from 5 independent families.

Methods: Lactate measurement, muscle histology, and mitochondrial activities in patients; PCR-based analyses of the size, amount, and sequence of muscle mitochondrial DNA (mtDNA) and proportion of the mutation; respiration, mitochondrial activities, proteins, translation, transfer RNA (tRNA) levels, and base modification state in skin fibroblasts and cybrids; and reactive oxygen species production, proliferation in the absence of glucose, and plasma membrane potential in cybrids.

View Article and Find Full Text PDF

Ribosome biogenesis requires numerous trans-acting factors, some of which are deeply conserved. In Bacteria, the endoribonuclease YbeY is believed to be involved in 16S rRNA 3'-end processing and its loss was associated with ribosomal abnormalities. In Eukarya, YBEY appears to generally localize to mitochondria (or chloroplasts).

View Article and Find Full Text PDF

Mitochondria harbor their own genetic system, yet critically depend on the import of a number of nuclear-encoded macromolecules to ensure their expression. In all eukaryotes, selected non-coding RNAs produced from the nuclear genome are partially redirected into the mitochondria, where they participate in gene expression. Therefore, the mitochondrial RNome represents an intricate mixture of the intrinsic transcriptome and the extrinsic RNA importome.

View Article and Find Full Text PDF

Mitochondria represent a chimera of macromolecules encoded either in the organellar genome, mtDNA, or in the nuclear one. If the pathway of protein targeting to different sub-compartments of mitochondria was relatively well studied, import of small noncoding RNAs into mammalian mitochondria still awaits mechanistic explanations and its functional issues are often not understood thus raising polemics. At the same time, RNA mitochondrial import pathway has an obvious attractiveness as it appears as a unique natural mechanism permitting to address nucleic acids into the organelles.

View Article and Find Full Text PDF

Mutations in mitochondrial DNA are an important source of severe and incurable human diseases. The vast majority of these mutations are heteroplasmic, meaning that mutant and wild-type genomes are present simultaneously in the same cell. Only a very high proportion of mutant mitochondrial DNA (heteroplasmy level) leads to pathological consequences.

View Article and Find Full Text PDF

Defects in mitochondrial DNA often cause neuromuscular pathologies, for which no efficient therapy has yet been developed. MtDNA targeting nucleic acids might therefore be promising therapeutic candidates. Nevertheless, mitochondrial gene therapy has never been achieved because DNA molecules can not penetrate inside mitochondria in vivo.

View Article and Find Full Text PDF

In yeast Saccharomyces cerevisiae, ~3% of the lysine transfer RNA acceptor 1 (tRK1) pool is imported into mitochondria while the second isoacceptor, tRK2, fully remains in the cytosol. The mitochondrial function of tRK1 is suggested to boost mitochondrial translation under stress conditions. Strikingly, yeast tRK1 can also be imported into human mitochondria in vivo, and can thus be potentially used as a vector to address RNAs with therapeutic anti-replicative capacity into mitochondria of sick cells.

View Article and Find Full Text PDF

Mitochondrial import of small noncoding RNA is found in a large variety of species. In mammalian cells, this pathway can be used for therapeutic purpose, to restore the mitochondrial functions affected by pathogenic mutations. Recently, we developed mitochondrial RNA vectors able to address therapeutic oligoribonucleotides into human mitochondria.

View Article and Find Full Text PDF

Defects in mitochondrial genome can cause a wide range of clinical disorders, mainly neuromuscular diseases. Presently, no efficient therapeutic treatment has been developed against this class of pathologies. Because most of deleterious mitochondrial mutations are heteroplasmic, meaning that wild type and mutated forms of mitochondrial DNA (mtDNA) coexist in the same cell, the shift in proportion between mutant and wild type molecules could restore mitochondrial functions.

View Article and Find Full Text PDF

Defects in mitochondrial genome can cause a wide range of clinical disorders, mainly neuromuscular diseases. Most of the deleterious mitochondrial mutations are heteroplasmic, meaning that wild type and mutated forms of mtDNA coexist in the same cell. Therefore, a shift in the proportion between mutant and wild type molecules could restore mitochondrial functions.

View Article and Find Full Text PDF

In human cell, a subset of small non-coding RNAs is imported into mitochondria from the cytosol. Analysis of the tRNA import pathway allowing targeting of the yeast tRNA(Lys)(CUU) into human mitochondria demonstrates a similarity between the RNA import mechanisms in yeast and human cells. We show that the cytosolic precursor of human mitochondrial lysyl-tRNA synthetase (preKARS2) interacts with the yeast tRNA(Lys)(CUU) and small artificial RNAs which contain the structural elements determining the tRNA mitochondrial import, and facilitates their internalization by isolated human mitochondria.

View Article and Find Full Text PDF

Mitochondrial mutations, an important cause of incurable human neuromuscular diseases, are mostly heteroplasmic: mutated mitochondrial DNA is present in cells simultaneously with wild-type genomes, the pathogenic threshold being generally >70% of mutant mtDNA. We studied whether heteroplasmy level could be decreased by specifically designed oligoribonucleotides, targeted into mitochondria by the pathway delivering RNA molecules in vivo. Using mitochondrially imported RNAs as vectors, we demonstrated that oligoribonucleotides complementary to mutant mtDNA region can specifically reduce the proportion of mtDNA bearing a large deletion associated with the Kearns Sayre Syndrome in cultured transmitochondrial cybrid cells.

View Article and Find Full Text PDF

Multiple-respiratory-chain deficiency represents an important cause of mitochondrial disorders. Hitherto, however, mutations in genes involved in mtDNA maintenance and translation machinery only account for a fraction of cases. Exome sequencing in two siblings, born to consanguineous parents, with severe encephalomyopathy, choreoathetotic movements, and combined respiratory-chain defects allowed us to identify a homozygous PNPT1 missense mutation (c.

View Article and Find Full Text PDF

The ubiquitin system is known to be involved in maintaining the integrity of mitochondria, but little is known about the role of deubiquitylating (DUB) enzymes in such functions. Budding yeast cells deleted for UBP13 and its close homolog UBP9 displayed a high incidence of petite colonies and slow respiratory growth at 37°C. Both Ubp9 and Ubp13 interacted directly with Duf1 (DUB-associated factor 1), a WD40 motif-containing protein.

View Article and Find Full Text PDF

Tom40 is an integral protein of the mitochondrial outer membrane, which as the central component of the Translocase of the Outer Membrane (TOM) complex forms a channel for protein import. We characterize the diffusion properties of individual Tom40 molecules fused to the photoconvertable fluorescent protein Dendra2 with millisecond temporal resolution. By imaging individual Tom40 molecules in intact isolated yeast mitochondria using photoactivated localization microscopy with sub-diffraction limited spatial precision, we demonstrate that Tom40 movement in the outer mitochondrial membrane is highly dynamic but confined in nature, suggesting anchoring of the TOM complex as a whole.

View Article and Find Full Text PDF

Mutations in human mitochondrial DNA are often associated with incurable human neuromuscular diseases. Among these mutations, an important number have been identified in tRNA genes, including 29 in the gene MT-TL1 coding for the tRNA(Leu(UUR)). The m.

View Article and Find Full Text PDF

5S rRNA is an essential component of ribosomes of all living organisms, the only known exceptions being mitochondrial ribosomes of fungi, animals, and some protists. An intriguing situation distinguishes mammalian cells: Although the mitochondrial genome contains no 5S rRNA genes, abundant import of the nuclear DNA-encoded 5S rRNA into mitochondria was reported. Neither the detailed mechanism of this pathway nor its rationale was clarified to date.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionkh751setul26eph9a7kpdqsknc620dcn): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once