Functional magnetic resonance imaging (fMRI) has the potential to provide noninvasive functional mapping of the brain with high spatial and temporal resolution. However, fMRI independent components (ICs) must be manually inspected, selected, and interpreted, requiring time and expertise. We propose a novel approach for automated labeling of fMRI ICs by establishing their characteristic spatio-functional relationship.
View Article and Find Full Text PDFMachine learning for image segmentation could provide expedited clinic workflow and better standardization of contour delineation. We evaluated a new model using deep decision forests of image features in order to contour pelvic anatomy on treatment planning CTs. 193 CT scans from one UK and two US institutions for patients undergoing radiotherapy treatment for prostate cancer from 2012-2016 were anonymized.
View Article and Find Full Text PDF