Catalysis stands as an indispensable cornerstone of modern society, underpinning the production of over 80% of manufactured goods and driving over 90% of industrial chemical processes. As the demand for more efficient and sustainable processes grows, better catalysts are needed. Understanding the working principles of catalysts is key, and over the last 50 years, surface-enhanced Raman Spectroscopy (SERS) has become essential.
View Article and Find Full Text PDFEffective prevention of recurrent kidney stone disease requires the understanding of the mechanisms of its formation. Numerous observations have demonstrated that a large number of pathological calcium oxalate kidney stones develop on an apatitic calcium phosphate deposit, known as Randall's plaque. In an attempt to understand the role of the inorganic hydroxyapatite phase in the formation and habits of calcium oxalates, we confined their growth under dynamic physicochemical and flow conditions in a reversible microfluidic channel coated with hydroxyapatite.
View Article and Find Full Text PDFTip-enhanced Raman spectroscopy (TERS) is an emerging nanospectroscopy technique whose implementation in situ/, namely, in the liquid phase and under electrochemical polarization (EC-TERS), remains challenging. The investigation of electrochemical processes at the nanoscale, in real time and over wide potential windows can be of particular interest but tedious when using EC-STM-TERS. This approach was successfully applied to the investigation of a well-established but yet complex system (a thiolated nitrobenzene derivative 4-NBM) whose reduction mechanism involves various multistep reaction paths, most likely pH-dependent.
View Article and Find Full Text PDFSkin reactions are well described complications of tattooing, usually provoked by red inks. Chemical characterizations of these inks are usually based on limited subjects and techniques. This study aimed to determine the organic and inorganic composition of inks using X-ray fluorescence spectroscopy (XRF), X-ray absorption spectroscopy (XANES) and Raman spectroscopy, in a cohort of patients with cutaneous hypersensitivity reactions to tattoo.
View Article and Find Full Text PDFIt is assumed that genetic diseases affecting the metabolism of cysteine and the kidney function lead to two different kinds of pathologies, namely cystinuria and cystinosis whereby generate L-cystine crystals. Recently, the presence of L-cysteine crystal has been underlined in the case of cystinosis. Interestingly, it can be strikingly seen that cystine ([-S-CH-CH-(NH)-COOH]) consists of two cysteine (CHNOS) molecules connected by a disulfide (S-S) bond.
View Article and Find Full Text PDFThe examination of the urinary sediment of a 64-year-old woman showed the presence of three different types of crystals, all with unusual morphology, which could not be identified with bright field microscopy, polarized light, and the knowledge of urine pH (7.5). The use of microscopic infrared spectroscopy, Raman spectroscopy and energy dispersive X-ray spectroscopy led to the identification of the three types of crystals as calcite, vaterite and aragonite, which are all variants of calcium carbonate crystals.
View Article and Find Full Text PDFIn the framework of urologic oncology, mini-invasive procedures have increased in the last few decades particularly for urothelial carcinoma. One of the essential elements in the management of this disease is still the diagnosis, which strongly influences the choice of treatment. The histopathologic evaluation of the tumor grade is a keystone of diagnosis, and tumor characterization is not possible with just a macroscopic evaluation.
View Article and Find Full Text PDFA rotaxane scaffold incorporating two dithiolane anchoring units for the modification of gold surfaces has been functionalized with multiple copies of a redox unit, namely ferrocene. Surface modification has been first assessed at the single molecule level by atomic force microscopy (AFM) and scanning tunneling microscopy (STM) imaging, while tip enhanced Raman spectroscopy (TERS) provided the local vibrational signature of the ferrocenyl subunits of the rotaxanes grafted onto the gold surface. Finally, oxidation of the redox moieties within a rotaxane scaffold grafted onto gold microelectrodes has been investigated by ultrafast cyclic voltammetry.
View Article and Find Full Text PDFHerein we present new substrates for surface-enhanced Raman spectroscopy (SERS). The synthesis of colloidal nanoparticles through an organometallic route allowed us to obtain gold, silver, or copper nanoparticles with well-controlled shapes and sizes (5-12 nm in diameter). The organization of these nanoparticles into large-scale 3D superlattices produces a very large number of "hot spots" at the origin of the signal enhancement.
View Article and Find Full Text PDFIn the quest for analytical tools which enable the characterization of materials at the nanoscale and under the condition of their operation (in situ, operando), the emerging tip-enhanced Raman spectroscopy (TERS) now enters the spotlight. We demonstrate in this work that a TERS tip can be functionalized and partially insulated to be used as a microelectrode enabling electrochemical substrate enhanced Raman sectroscopy (EC-SERS) at a single hotspot. This "SERS at a tip" experiment enables one to capture the electrochemical transformation of a molecular layer self-assembled on a tapered gold microelectrode.
View Article and Find Full Text PDFTo use water as the source of electrons for proton or CO reduction within electrocatalytic devices, catalysts are required for facilitating the proton-coupled multi-electron oxygen evolution reaction (OER, 2 H O→O +4 H +4 e ). These catalysts, ideally based on cheap and earth abundant metals, have to display high activity at low overpotential and good stability and selectivity. While numerous examples of Co, Mn, and Ni catalysts were recently reported for water oxidation, only few examples were reported using copper, despite promising efficiencies.
View Article and Find Full Text PDFAn ecofriendly chemical reduction of graphene oxide (GO) in water is reported. The reducing agent is an electrochemically reduced Keggin-type polyoxometalate (SiW O ). Moreover, this process leads to the fabrication of SiW @rGO nanocomposite.
View Article and Find Full Text PDFThe objective of this effort was to correlate the local surface ionic conductance of a Nafion 212 proton-exchange membrane with its bulk and interfacial transport properties as a function of water content. Both macroscopic and microscopic proton conductivities were investigated at different relative humidity levels, using direct-current voltammetry and current-sensing atomic force microscopy (CSAFM). We were able to identify small ion-conducting domains that grew with humidity at the surface of the membrane.
View Article and Find Full Text PDFThe interaction of Li(+) with single and few layer graphene is reported. In situ Raman spectra were collected during the electrochemical lithiation of the single- and few-layer graphene. While the interaction of lithium with few layer graphene seems to resemble that of graphite, single layer graphene behaves very differently.
View Article and Find Full Text PDF