Nat Rev Microbiol
September 2024
Bacteriocins are potent antimicrobial peptides that are produced by bacteria. Since their discovery almost a century ago, diverse peptides have been discovered and described, and some are currently used as commercial food preservatives. Many bacteriocins exhibit extensively post-translationally modified structures encoded on complex gene clusters, whereas others have simple linear structures.
View Article and Find Full Text PDFNisin A, the prototypical lantibiotic, is an antimicrobial peptide currently utilised as a food preservative, with potential for therapeutic applications. Here, we describe nisin E, a novel nisin variant produced by two strains, APC4007 and APC4008, isolated from sheep milk. Shotgun whole genome sequencing and analysis revealed biosynthetic gene clusters similar to nisin U, with a unique rearrangement of the core peptide encoding gene within the cluster.
View Article and Find Full Text PDFWe identified a strain of which produces a potent bacteriocin with activity against a broad range of Gram-positive bacteria, many of which are pathogenic to animals and humans. The bacteriocin was purified and found to have a mass of 4,091 ± 1 Da with a sequence of GFGCNLITSNPYQCSNHCKSVGYRGGYCKLRTVCTCY containing three disulfide bridges. Surprisingly, near relatives of actifensin were found to be a series of related eukaryotic defensins displaying greater than 50% identity to the bacteriocin.
View Article and Find Full Text PDFThe group (LCG), composed of the closely related , and are some of the most widely researched and applied probiotic species of lactobacilli. The three species have been extensively studied, classified and reclassified due to their health promoting properties. Differentiation is often difficult by conventional phenotypic and genotypic methods and therefore new methods are being continually developed to distinguish the three closely related species.
View Article and Find Full Text PDFMicrobial fermentation has been used historically for the preservation of foods, the health benefits of which have since come to light. Early dairy fermentations depended on the spontaneous activity of the indigenous microbiota of the milk. Modern fermentations rely on defined starter cultures with desirable characteristics to ensure consistency and commercial viability.
View Article and Find Full Text PDF