Publications by authors named "Ivan Sokirniy"

Variant annotation is a crucial objective in mammalian functional genomics. Deep Mutational Scanning (DMS) is a well-established method for annotating human gene variants, but CRISPR base editing (BE) is emerging as an alternative. However, questions remain about how well high-throughput base editing measurements can annotate variant function and the extent of downstream experimental validation required.

View Article and Find Full Text PDF
Article Synopsis
  • Many cancer therapies fail because tumors develop resistance to the drugs over time.
  • Researchers created a "selection gene drive" system that can manipulate tumor evolution to overcome this resistance, even with varying genetic backgrounds in cancer cells.
  • Experimental results show that this approach can eliminate resistance in lab settings and in mouse models, paving the way for more effective cancer treatments.
View Article and Find Full Text PDF

While astrocyte-to-neuron (AtN) reprogramming holds great promise in regenerative medicine, the molecular mechanisms that govern this unique biological process remain elusive. To understand the function of miRNAs during the AtN reprogramming process, we performed RNA-seq of both mRNAs and miRNAs on human astrocyte (HA) cultures upon NeuroD1 overexpression. Bioinformatics analyses showed that NeuroD1 not only activated essential neuronal genes to initiate the reprogramming process but also induced miRNA changes in HA.

View Article and Find Full Text PDF

While astrocyte-to-neuron (AtN) reprogramming holds great promise in regenerative medicine, the molecular mechanisms that govern this unique biological process remain elusive. MicroRNAs (miRNAs), as post-transcriptional regulators of gene expression, play crucial roles during development and under various pathological conditions. To understand the function of miRNAs during AtN reprogramming process, we performed RNA-seq of both mRNAs and miRNAs on human astrocyte (HA) cultures upon NeuroD1 overexpression.

View Article and Find Full Text PDF
Article Synopsis
  • Genomic data can help tailor treatments to individual patients, particularly through identifying mutations that respond to specific therapies.
  • A new resampling method was developed for comparing gene pair selections, which was tested on the ALK variant in melanoma, initially believed to predict sensitivity to ALK inhibitors.
  • The findings show that ALK isn't mutually exclusive with critical melanoma oncogenes and doesn't indicate sufficient cancer growth or responsiveness to treatment, challenging its role as a target for therapy.
View Article and Find Full Text PDF

Purpose: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease, affecting children and adults. Chemotherapy treatments show high response rates but have debilitating effects and carry risk of relapse. Previous work implicated NOTCH1 and other oncogenes.

View Article and Find Full Text PDF

Accumulation of Foxp3+ T-regulatory (Treg) cells in the tumor microenvironment is associated with tumor immune evasion and poor patient outcome in the case of many solid tumors. Current therapeutic strategies for blocking Treg functions are not Treg-specific, and display only modest and transient efficacy. Recent studies revealed that ubiquitin-specific protease 7 (USP7) is essential for Treg functions by stabilizing expression of Tip60 and Foxp3, which together are central to the development and maintenance of the Treg cell lineage.

View Article and Find Full Text PDF

The synthesis and characterization of an Fe(III) catecholate-nitronylnitroxide (CAT-NN) complex (1-NN) that undergoes Fe(III) spin-crossover is described. Our aim is to determine whether the intraligand exchange coupling of the semiquinone-nitronylnitroxide Fe(II)(SQ-NN) excited state resulting from irradiation of the CAT → Fe(III) LMCT band would affect either the intrinsic photophysics or the iron spin-crossover event when compared to the complex lacking the nitronylnitroxide radical (1). X-ray crystallographic analysis provides bond lengths consistent with a ferric catecholate charge distribution.

View Article and Find Full Text PDF