In order to circumvent the usual nucleation of randomly distributed tiny metallic dots photodeposited on TiO nanoparticles (NPs) induced by conventional UV lamps, we propose to synthesize well-controlled nanoheterodimers (NHDs) using lasers focused inside microfluidic reactors to strongly photoactivate redox reactions of active ions flowing along with nanoparticles in water solution. Since the flux of photons issued from a focused laser may be orders of magnitude higher than that reachable with classical lamps, the production of electron-hole pairs is tremendously increased, ensuring a large availability of carriers for the deposition and favoring the growth of a single metallic dot as compared to secondary nucleation events. We show that the growth of single silver or gold nanodots can be controlled by varying the beam intensity, the concentration of the metallic salt, and the flow velocity inside the microreactor.
View Article and Find Full Text PDFDepending on the minimum size of their micro/nanostructure, thin films can exhibit very different behaviors and optical properties. From optical waveguides down to artificial anisotropy, through diffractive optics and photonic crystals, the application changes when decreasing the minimum feature size. Rigorous electromagnetic theory can be used to model most of the components, but, when the size is a few nanometers, quantum theory also has to be used.
View Article and Find Full Text PDF