Fibre breaks govern the strength of unidirectional composite materials under tension. The progressive development of fibre breaks is studied using in situ X-ray computed tomography, especially with synchrotron radiation. However, even with synchrotron radiation, the resolution of the time-resolved in situ images is not sufficient for a fully automated analysis of continuous mechanical deformations.
View Article and Find Full Text PDFIn the last decade, fatigue damage models for fiber-reinforced polymer composites have been developed assuming the fracture energy equivalence hypothesis. These models are able to predict a fatigue life of composite laminates, but their identification requires a significant number of off-axial tests for various stress ratios. The present study proposes the stress ratio dependent model, which phenomenologically adopts a decrease in stiffness and residual strength of a unique ply according to experimental constant life diagrams.
View Article and Find Full Text PDFPrediction of mechanical properties is an essential part of material design. State-of-the-art simulation-based prediction requires data on microstructure and inter-component interactions of material. However, due to high costs and time limitations, such parameters, which are especially required for the simulation of advanced properties, are not always available.
View Article and Find Full Text PDFStretchable and flexible electronics has attracted broad attention over the last years. Nanocomposites based on elastomers and carbon nanotubes are a promising material for soft electronic applications. Despite the fact that single-walled carbon nanotube (SWCNT) based nanocomposites often demonstrate superior properties, the vast majority of the studies were devoted to those based on multiwalled carbon nanotubes (MWCNTs) mainly because of their higher availability and easier processing procedures.
View Article and Find Full Text PDFThe present paper is focused on an experimental study of the damage-to-failure mechanism of additively manufactured 316L stainless steel specimens subjected to very high cycle fatigue (VHCF) loading. Ultrasonic axial tension-compression tests were carried out on specimens for up to 10 cycles, and fracture surface analysis was performed. A fine granular area (FGA) surrounding internal defects was observed and formed a "fish-eye" fracture type.
View Article and Find Full Text PDFDeveloping bone scaffolds can greatly improve the patient's quality of life by accelerating the rehabilitation process. In this paper, we studied the process of composite polycaprolactone supercritical foaming for tissue engineering. The influence of graphene oxide and reduced graphene oxide on the foaming parameters was studied.
View Article and Find Full Text PDF