Publications by authors named "Ivan Savenko"

Bosonic condensation and lasing of exciton polaritons in microcavities is a fascinating solid-state phenomenon. It provides a versatile platform to study out-of-equilibrium many-body physics and has recently appeared at the forefront of quantum technologies. Here, we study the photon statistics via the second-order temporal correlation function of polariton lasing emerging from an optical microcavity with an embedded atomically thin MoSe_{2} crystal.

View Article and Find Full Text PDF

In the case of structureless bosons, cooled down to low temperatures, the absorption of electromagnetic waves by their Bose-Einstein condensate is usually forbidden due to the momentum and energy conservation laws: the phase velocity of the collective modes of the condensate called bogolons is sufficiently lower than the speed of light. Thus, only the light scattering processes persist. However, the situation might be different in the case of composite bosons or the bosons with an internal structure.

View Article and Find Full Text PDF

Light amplification by stimulated emission of radiation, well-known for revolutionising photonic science, has been realised primarily in fermionic systems including widely applied diode lasers. The prerequisite for fermionic lasing is the inversion of electronic population, which governs the lasing threshold. More recently, bosonic lasers have also been developed based on Bose-Einstein condensates of exciton-polaritons in semiconductor microcavities.

View Article and Find Full Text PDF

Conventional semiconductor laser emission relies on stimulated emission of photons, which sets stringent requirements on the minimum amount of energy necessary for its operation. In comparison, exciton-polaritons in strongly coupled quantum well microcavities can undergo stimulated scattering that promises more energy-efficient generation of coherent light by 'polariton lasers'. Polariton laser operation has been demonstrated in optically pumped semiconductor microcavities at temperatures up to room temperature, and such lasers can outperform their weak-coupling counterparts in that they have a lower threshold density.

View Article and Find Full Text PDF