Publications by authors named "Ivan S Proskurkin"

Recent studies of the spread of substances penetrating the disrupted blood-brain barrier have revealed that the spread in the parenchyma surrounding a vessel has a complex character. In particular, a flow-like motion occurred for a short time that exhibits a smooth transition to diffusional spread. To address the possible physical background of such behavior, we created a system formed by a hydrogel medium with a channel filled by a marker solution, which can serve as a physical model mimicking the process of a substance passively spreading to the brain's parenchyma when the blood-brain barrier is disrupted.

View Article and Find Full Text PDF

A network of four excitable cells with the Belousov-Zhabotinsky (BZ) reaction is considered both theoretically and experimentally. All cells are coupled by pulses with time delays between the moment of a spike in cell # and the moment of the corresponding perturbation of an addressee (cell #). The coupling strengths of all connections except the coupling strength between cells #1 and #2 are constant.

View Article and Find Full Text PDF

A theoretically predicted hierarchical network of pulse coupled chemical micro-oscillators and excitable micro-cells that we call a chemical "neurocomputer" (CN) or even a chemical "brain" is tested experimentally using the Belousov-Zhabotinsky reaction. The CN consists of five functional units: (1) a central pattern generator (CPG), (2) an antenna, (3) a reader for the CPG, (4) a reader for the antenna unit, and (5) a decision making (DM) unit. A hybrid CN, in which such chemical units as readers and DM units are replaced by electronic units, is tested as well.

View Article and Find Full Text PDF

We present an experimental system of four identical microreactors (MRs) in which the photosensitive oscillatory Belousov-Zhabotinsky (BZ) reaction occurs. The inhibitory coupling of these BZ MRs is organized via pulses of light coming to each MR from a computer projector. These pulses are induced by spike(s) in other MR(s) of the same network.

View Article and Find Full Text PDF

Switching between stable oscillatory modes in a network of four Belousov-Zhabotinsky oscillators coupled in a ring via unidirectional inhibitory pulsatile coupling with a time delay is analysed computationally and experimentally. There are five stable modes in this network: in-phase, anti-phase, walk, walk reverse, and three-cluster modes. Transitions between the modes are carried out by short external pulses applied to one or several oscillators.

View Article and Find Full Text PDF

We have investigated the effect of global negative feedback (GNF) on the dynamics of a 1D array of water microdroplets (MDs) filled with the reagents of the photosensitive oscillatory Belousov-Zhabotinsky (BZ) reaction. GNF is established by homogeneous illumination of the 1D array with the light intensity proportional to the number of BZ droplets in the oxidized state with the coefficient of proportionality ge. MDs are immersed in the continuous oil phase and diffusively coupled with the neighboring droplets via inhibitor Br2 which is soluble in the oil phase.

View Article and Find Full Text PDF

Dynamical regimes of two pulse coupled non-identical Belousov-Zhabotinsky oscillators have been studied experimentally as well as theoretically with the aid of ordinary differential equations and phase response curves both for pure inhibitory and pure excitatory coupling. Time delay τ between a spike in one oscillator and perturbing pulse in the other oscillator plays a significant role for the phase relations of synchronous regimes of the 1:1 and 1:2 resonances. Birhythmicity between anti-phase and in-phase oscillations for inhibitory pulse coupling as well as between 1:2 and 1:1 resonances for excitatory pulse coupling have also been found.

View Article and Find Full Text PDF

We introduce a new type of pulse coupling between chemical oscillators. A constant inflow of inhibitor in one reactor is interrupted shortly after a time delay after a sharp spike of activity in the other reactor. We proved experimentally and theoretically that this reversed inhibitory coupling is analogous to excitatory coupling.

View Article and Find Full Text PDF