Publications by authors named "Ivan Robert Nabi"

SARS-CoV-2 Omicron subvariants with increased transmissibility and immune evasion are spreading globally with alarming persistence. Whether the mutations and evolution of spike (S) Omicron subvariants alter the viral hijacking of human TMPRSS2 for viral entry remains to be elucidated. This is particularly important to investigate because of the large number and diversity of mutations of S Omicron subvariants reported since the emergence of BA.

View Article and Find Full Text PDF

Large-scale processing of heterogeneous datasets in interdisciplinary research often requires time-consuming manual data curation. Ambiguity in the data layout and preprocessing conventions can easily compromise reproducibility and scientific discovery, and even when detected, it requires time and effort to be corrected by domain experts. Poor data curation can also interrupt processing jobs on large computing clusters, causing frustration and delays.

View Article and Find Full Text PDF

Identification of small objects in fluorescence microscopy is a non-trivial task burdened by parameter-sensitive algorithms, for which there is a clear need for an approach that adapts dynamically to changing imaging conditions. Here, we introduce an adaptive object detection method that, given a microscopy image and an image level label, uses kurtosis-based matching of the distribution of the image differential to express operator intent in terms of recall or precision. We show how a theoretical upper bound of the statistical distance in feature space enables application of belief theory to obtain statistical support for each detected object, capturing those aspects of the image that support the label, and to what extent.

View Article and Find Full Text PDF

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a global public health crisis. The reduced efficacy of therapeutic monoclonal antibodies against emerging SARS-CoV-2 variants of concern (VOCs), such as omicron BA.5 subvariants, has underlined the need to explore a novel spectrum of antivirals that are effective against existing and evolving SARS-CoV-2 VOCs.

View Article and Find Full Text PDF

The COVID-19 pandemic caused by the SARS-CoV-2 virus remains a global public health crisis. Although widespread vaccination campaigns are underway, their efficacy is reduced owing to emerging variants of concern. Development of host-directed therapeutics and prophylactics could limit such resistance and offer urgently needed protection against variants of concern.

View Article and Find Full Text PDF

The COVID-19 pandemic caused by the SARS-CoV-2 virus remains a global public health crisis. Although widespread vaccination campaigns are underway, their efficacy is reduced against emerging variants of concern (VOCs) . Development of host-directed therapeutics and prophylactics could limit such resistance and offer urgently needed protection against VOCs .

View Article and Find Full Text PDF

Single-molecule localization microscopy (SMLM) is a relatively new imaging modality, winning the 2014 Nobel Prize in Chemistry, and considered as one of the key super-resolution techniques. SMLM resolution goes beyond the diffraction limit of light microscopy and achieves resolution on the order of 10-20 nm. SMLM thus enables imaging single molecules and study of the low-level molecular interactions at the subcellular level.

View Article and Find Full Text PDF

The antibody-drug conjugate trastuzumab-emtansine (T-DM1) offers an additional treatment option for patients with HER2-amplified tumors. However, primary and acquired resistance is a limiting factor in a significant subset of patients. Hypoxia, a hallmark of cancer, regulates the trafficking of several receptor proteins with potential implications for tumor targeting.

View Article and Find Full Text PDF

Single molecule localization microscopy (SMLM) allows unprecedented insight into the three-dimensional organization of proteins at the nanometer scale. The combination of minimal invasive cell imaging with high resolution positions SMLM at the forefront of scientific discovery in cancer, infectious, and degenerative diseases. By stochastic temporal and spatial separation of light emissions from fluorescent labelled proteins, SMLM is capable of nanometer scale reconstruction of cellular structures.

View Article and Find Full Text PDF

Caveolae are plasma membrane invaginations whose formation requires caveolin-1 (Cav1), the adaptor protein polymerase I, and the transcript release factor (PTRF or CAVIN1). Caveolae have an important role in cell functioning, signaling, and disease. In the absence of CAVIN1/PTRF, Cav1 forms non-caveolar membrane domains called scaffolds.

View Article and Find Full Text PDF

Caveolin-1 (Cav1), the coat protein for caveolae, also forms non-caveolar Cav1 scaffolds. Single molecule Cav1 super-resolution microscopy analysis previously identified caveolae and three distinct scaffold domains: smaller S1A and S2B scaffolds and larger hemispherical S2 scaffolds. Application here of network modularity analysis of SMLM data for endogenous Cav1 labeling in HeLa cells shows that small scaffolds combine to form larger scaffolds and caveolae.

View Article and Find Full Text PDF

We recently demonstrated that Cav1 (caveolin-1) is a negative regulator of Stat3 (signal transducer and activator of transcription-3) activity in mouse fibroblasts and human lung carcinoma SHP77 cells. We now examined whether the cellular context may affect their levels as well as the relationship between them, by assessing Cav1 and Stat3-ptyr705 amounts in different cell lines. In MDA-MB-231, A549, and HaCat cells, Cav1 levels were high and Stat3-ptyr705 levels were low, consistent with the notion of a negative effect of endogenous Cav1 on Stat3-ptyr705 levels in these lines.

View Article and Find Full Text PDF

Motivation: Network analysis and unsupervised machine learning processing of single-molecule localization microscopy of caveolin-1 (Cav1) antibody labeling of prostate cancer cells identified biosignatures and structures for caveolae and three distinct non-caveolar scaffolds (S1A, S1B and S2). To obtain further insight into low-level molecular interactions within these different structural domains, we now introduce graphlet decomposition over a range of proximity thresholds and show that frequency of different subgraph (k = 4 nodes) patterns for machine learning approaches (classification, identification, automatic labeling, etc.) effectively distinguishes caveolae and scaffold blobs.

View Article and Find Full Text PDF

Quantitative approaches to analyze the large data sets generated by single molecule localization super-resolution microscopy (SMLM) are limited. We developed a computational pipeline and applied it to analyzing 3D point clouds of SMLM localizations (event lists) of the caveolar coat protein, caveolin-1 (Cav1), in prostate cancer cells differentially expressing CAVIN1 (also known as PTRF), that is also required for caveolae formation. High degree (strongly-interacting) points were removed by an iterative blink merging algorithm and Cav1 network properties were compared with randomly generated networks to retain a sub-network of geometric structures (or blobs).

View Article and Find Full Text PDF

Expression of Caveolin-1 (Cav1), a key component of cell surface caveolae, is elevated in prostate cancer (PCa) and associated with PCa metastasis and a poor prognosis for PCa patients. Polymerase I and Transcript Release Factor (PTRF)/cavin-1 is a cytoplasmic protein required for Cav1-dependent formation of caveolae. Expression of PTRF reduces the motility of PC3 cells, a metastatic prostate cancer cell line that endogenously expresses abundant Cav1 but no PTRF and no caveolae, suggesting a role for non-caveolar Cav1 domains, or Cav1 scaffolds, in PCa cell migration.

View Article and Find Full Text PDF

Caveolins (Cavs) are integrated plasma membrane proteins that are complex signaling regulators with numerous partners and whose activity is highly dependent on cellular context. Cavs are both positive and negative regulators of cell signaling in and/or out of caveolae, invaginated lipid raft domains whose formation is caveolin expression dependent. Caveolins and rafts have been implicated in membrane compartmentalization; proteins and lipids accumulate in these membrane microdomains where they transmit fast, amplified and specific signaling cascades.

View Article and Find Full Text PDF

Measurements of contact-dependent fluorescence quenching and of fluorescence resonance energy transfer (FRET) within bilayers provide information concerning the spatial relationships between molecules on distance scales of a few nm or up a few tens of nm, respectively, and are therefore well suited to detect the presence and composition of membrane microdomains. As described in this review, techniques based on fluorescence quenching and FRET have been used to demonstrate the formation of nanoscale liquid-ordered domains in cholesterol-containing model membranes under physiological conditions, and to investigate the structural features of lipids and proteins that influence their partitioning between liquid-ordered and liquid-disordered domains. FRET-based methods have also been used to test for the presence of 'raft' microdomains in the plasma membranes of mammalian cells.

View Article and Find Full Text PDF

The multiple beta-actin rich pseudopodial protrusions of the invasive variant of Moloney sarcoma virus (MSV)-transformed epithelial MDCK cells (MSV-MDCK-INV) are strongly labeled for phosphotyrosine. Increased tyrosine phosphorylation among a number of proteins was detected in MSV-MDCK-INV cells relative to untransformed and MSV-transformed MDCK cells, especially for the hepatocyte growth factor receptor (HGF-R), otherwise known as c-met proto-oncogene. Cell surface expression of HGF-R was similar in the three cell lines, indicating that HGF-R is constitutively phosphorylated in MSV-MDCK-INV cells.

View Article and Find Full Text PDF