This work deals with the effects of two individual isothermal aging experiments (450 °C/5000 h and 700 °C/2500 h) and the subsequent room-temperature electrolytic hydrogen charging of TP316H stainless steel on its Charpy V-notch (CVN) impact toughness and fracture behavior at room temperature. Microstructural analyses revealed that aging at 700 °C resulted in the abundant precipitation of intermediary phases, namely, the CrCbased carbide phase and FeMo-based Laves phase, whereas aging at 450 °C resulted in much less pronounced precipitation of mostly intergranular CrC-based carbides. The matrix phase of 700 °C-aged material was completely formed of austenitic solid solution with a face-centered cubic (FCC) crystal structure, whereas an additional formation of ferritic phase with a base-centered cubic (BCC) structure was detected in 450 °C-aged material.
View Article and Find Full Text PDFIn this paper, enhancing the tribological characteristics of novel cast metallic materials-hybrid multi-component cast irons-by applying a strengthening heat treatment is described. The experimental materials were the cast alloys of a nominal composition (5 wt.% W, 5 wt.
View Article and Find Full Text PDFHigh-carbon steels are normally used as tool materials. The use of such steels for construction is limited due to their increased brittleness and poor weldability. However, it appears that high-carbon steels possess certain hidden reserves for enhanced plasticity and strength if properly heat-treated.
View Article and Find Full Text PDFStructural rolled steels are the primary products of modern ferrous metallurgy. Consequently, enhancing the mechanical properties of rolled steel using energy-saving processing routes without furnace heating for additional heat treatment is advisable. This study compared the effect on the mechanical properties of structural steel for different processing routes, like conventional hot rolling, normalizing rolling, thermo-mechanically controlled processing (TMCP), and TMCP with accelerating cooling (AC) to 550 °C or 460 °C.
View Article and Find Full Text PDFThis paper is devoted to the evaluation of the "three-body-abrasion" wear behaviour of (wt.%) 5W-5Mo-5V-10Cr-2.5Ti-Fe (balance) multi-component (C + B)-added alloys in the as-cast condition.
View Article and Find Full Text PDFThe structural features and nanoindentation/tribological properties of 316 stainless steel fabricated by conventional rolling and laser-based powder bed fusion (LPBF) were comparatively investigated regarding the effect of surface-pulsed plasma treatment (PPT). PPT was performed using an electrothermal axial plasma accelerator under a discharge voltage of 4.5 kV and a pulse duration of 1 ms.
View Article and Find Full Text PDFHigh-strength non-oriented electro-technical steels with a low thickness possess excellent isotropy of electromagnetic and mechanical properties which is highly required in the production of high-efficiency electric motors. The manufacturing process of this type of steel includes very important and technologically complex routes such as hot rolling, cold rolling, temper rolling, or final heat treatment. The final thickness is responsible for the decrease in eddy-current losses and is effectively achieved during cold rolling by the tandem rolling mill.
View Article and Find Full Text PDFManufacturing the magnetic cores in electrical machines impacts the magnetic performance of the electrical steel by inducing stresses near the cutting edge. In this paper, energy loss behaviour in non-oriented electrical steels punched with different cutting clearances before and after annealing is investigated. An experimental shear cutting tool was employed to punch the ring-shaped parts from electrical steels in a finished state with four different values of cutting clearance corresponding to 1%, 3%, 5%, and 7% of the sheet thickness.
View Article and Find Full Text PDFThe structural and tribological properties of a protective high-chromium coating synthesized on gray cast iron by air pulse-plasma treatments were investigated. The coating was fabricated in an electrothermal axial plasma accelerator equipped with an expandable cathode made of white cast iron (2.3 wt.
View Article and Find Full Text PDFThe purpose of the research was to obtain an arc welded joint of a preliminary quenched high-carbon wear resistant steel without losing the structure that is previously obtained by heat treatment. 120Mn3Si2 steel was chosen for experiments due to its good resistance to mechanical wear. The fast cooling of welding joints in water was carried out right after welding.
View Article and Find Full Text PDFIn this study, the influence of alloying elements on the mechanical properties of iron borides FeB and FeB formed in Fe-B-X (X = C, Cr, Mn, V, W, Mn + V) alloys were evaluated using instrumented indentation measurement. The microstructural characterization of the alloys was performed by means of X-ray diffraction and scanning electron microscope equipped with an energy dispersive X-ray analyzer. The fraction of the phases present in the alloys was determined either by the lever rule or by image analysis.
View Article and Find Full Text PDFThis article aims to discusses machine learning modelling using a dataset provided by the LANL (Los Alamos National Laboratory) earthquake prediction competition hosted by Kaggle. The data were obtained from a laboratory stick-slip friction experiment that mimics real earthquakes. Digitized acoustic signals were recorded against time to failure of a granular layer compressed between steel plates.
View Article and Find Full Text PDFCurrently, the non-oriented (NO) iron-silicon steels are extensively used as the core materials in various electrical devises due to excellent combination of their mechanical and soft magnetic properties. The present study introduces a fairly innovative technological approach applicable for fully finished NO electrical steel before punching the laminations. It is based on specific mechanical processing by bending and rolling in combination with subsequent annealing under dynamic heating conditions.
View Article and Find Full Text PDFIn the present work, we have used unconventional short-term secondary recrystallization heat treatment employing extraordinary high heating rate to develop coarse-grained microstructure with enhanced intensity of rotating cube texture {100}<011> in semi-finish vacuum degassed non-oriented electrical steels. The soft magnetic properties were improved through the increase of grains size with favourable cube crystallographic orientation. The appropriate final textural state of the treated experimental steels was achieved by strain-induced grain boundary migration mechanism, activated by gradient of accumulated stored deformation energy between neighbouring grains after the application of soft cold work, combined with steep temperature gradient during subsequent heat treatment under dynamic heating conditions.
View Article and Find Full Text PDF